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Brief History of Fortran 

The first FORTRAN (which stands for Formula Translation) compiler was developed 
in 1957 at IBM.  In 1966 the American Standards Association (later the America 
National Standards Institute, ANSI) released the first standard version of FORTRAN, 
which later became known as FORTRAN 66.  The standard aimed at providing a 
standardised, portable language, which could easily be transferred from one computer 
system to the other.  In 1977, a revised version of FORTRAN, FORTRAN 77, was 
completed (the standard was published in 1978).  The next version is Fortran 90, which is 
a major advance over FORTRAN 77.  It contains many new features; however, it also 
contains all of FORTRAN 77.  Thus, a standard-conforming FORTRAN 77 program is 
also a standard-conforming Fortran 90 program.  Some of FORTRAN 77’s features were 
identified as “obsolescent”, but they were not deleted.  Obsolescent features are 
candidates for deletion in the next standard, and should thus be avoided.  The latest 
standard is Fortran 95.  Fortran 95 contains only minor changes to Fortran 90; however, a 
few of the obsolescent features identified in Fortran 90 were deleted.   

Because of the requirement that all of FORTRAN 77’s features must be contained in 
Fortran 90, there are often several ways to do the same thing, which may lead to 
confusion.  For example, an integer-type variable can be declared in FORTRAN 77 
format: 

integer i 

or in Fortran 90 format: 

integer :: i 

In addition, as a legacy from FORTRAN 77, Fortran 90 contains features that are 
considered bad or unsafe programming practice, but they are not deleted in order to keep 
the language “backward compatible”.   

To remedy these problems, a small group of programmers developed the F language.  
This is basically a subset of Fortran 90, designed to be highly regular and reliable to use.  
It is much more compact than Fortran 90 (because it does not contain all of FORTRAN 
77’s features).   

There will be a new standard soon, which will be called Fortran 2003 (even though the 
final international standard will not come out before late 2004).  There will be new 
features in Fortran 2003 (such as support for exception handling, object-oriented 
programming, and improved interoperability with the C language), but the difference 
between Fortran 90/95 and Fortran 2000 will not be as large as that between FORTRAN 
77 and Fortran 90.   

Introduction to the course 

This course intends to teach Fortran 90/95, but from the point of view of the F language.  
Thus, many of the old FORTRAN 77 features will not be discussed, and should not be 
used in the programs.   
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It is assumed that you have access to a computer with a Fortran 90 or Fortran 95 compiler.  
It is strongly recommended to switch on the compiler flag that warns when the compiler 
encounters source code that does not conform to the Fortran 90 standard, and the flag that 
shows warning messages.  For example: 

Silicon Graphics: f90 –ansi –w2 –o executable-name sourcefile.f90 

 Or even better: 
 f90 –ansi –fullwarn –o executable-name sourcefile.f90 

Sun: f90 –ansi 

You can check these flags by typing “man f90” or “man f95” (on a Unix system).  You 
may ask someone in your group for help how to use the compiler and editor on the 
computer you use.   

If you have access to emacs or xemacs, and know how to use it (or are willing to invest a 
bit of time in learning how to use it), it is recommended to use this editor.  It will pay off 
(emacs can format the source code for you, and thus detect program mistakes early on).   
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1. Getting started 
Type, compile and run the following program (call the file hello.f90): 

program hello 
! this programs prints "hello world!" to the screen 

    implicit none 

    print*, "Hello world!" 

end program hello 
Note the following: 

• 
• 
• 

• 

• 

• 

a program starts with program program_name 
it ends with end program program_name 
print* displays data (in this case, the character string “Hello, world!”) on the 
screen.   
all characters after the exclamation mark (!) (except in a character string) are 
ignored by the compiler.  It is good programming practice to include comments.  
Comments can also start after a statement, for example: 

 print*, “Hello world!”   ! this line prints the message “Hello world!” 
Note the indentation.  Indentation is essential to keep a program readable.  
Additionally, empty lines are allowed and can help to make the program readable.   
Fortran 90 allows both upper and lowercase letters (unlike FORTRAN 77, in 
which only uppercase was allowed).   

2. Types, Variables, Constants, Operators 
Names in Fortran 90 

A name or “identifier” in Fortran must adhere to fixed rules.  They cannot be longer than 
31 characters, must be composed of alphanumeric characters (all the letters of the 
alphabet, and the digits 0 to 9) and underscores ( _ ), and the first character must be a 
letter.  Identifiers are case-insensitive (except in character strings like “Hello world!” in 
the example above); Thus, PRINT and print are completely identical.   

Types 

A variable is a data object whose value can be defined and redefined (in contrast to 
constants, see below).  Variables and constants have a type, which can be one of the five 
intrinsic types, or a derived type.  Intrinsic types are part of the Fortran language.  There 
are five different intrinsic types.  In Fortran 90, there is additionally the possibility of 
defining derived types, which are defined by the user (see below).  The five intrinsic 
types are: 

Integer Type   
For integer values (like 1, 2, 3, 0, -1, -2, …).   

 4



Fortran 90/95 Programming Manual  

Real Type   
For real numbers (such as 3.14, -100.876, 1.0 etc.).  A processor must provide two 
different real types: The default real type and a type of higher precision, with the name 
double precision.  Also this is a legacy of FORTRAN 77.  Fortran 90 gives much more 
control over the precision of real and integer variables (through the kind specifier), see 
chapter on Numeric Precision, and there is therefore no need to use double precision.  
However, you will see double precision often used in older programs.  For most of the 
exercises and examples in this manual the real type suffices.  In the real word however, 
double precision is often required.   

For now, if you prefer to use double precision in your programs, use: 

 real (kind=kind(1.0d0)) :: variable_name 

Complex Type   
For complex numbers.  A complex value consists of two real numbers, the real part and 
the imaginary part.  Thus, the complex number (2.0, -1.0) is equal to 2.0 – 1.0i.   

Logical Type   
There are only two logical values: .true. and .false. (note the dots around the words true 
and false).   

Character Type   
Data objects of the character type include characters and strings (a string is a sequence of 
characters).  The length of the string can be specified by len (see the examples below).  If 
no length is specified, it is 1.   

Constants 

A constant is a data object whose value cannot be changed.   

A literal constant is a constant value without a name, such as 3.14 (a real constant), 
“Tanja” (a character constant), 300 (an integer constant), (3.0, -3.0) (a complex 
constant), .true. or .false. (logical constants.  These two are the only logical constants 
available).   

A named constant is a constant value with a name.  Named constants and variables must 
be declared at the beginning of a program (or subprogram – see Chapter 4), in a so-called 
type declaration statement.  The type declaration statement indicates the type and name 
of the variable or constant (note the two colons between the type and the name of the 
variable or constant).  Named constants must be declared with the parameter attribute: 

 real, parameter :: pi = 3.1415927 

Variables 

Like named constants, variables must be declared at the beginning of a program (or 
subprogram) in a type declaration statement: 

 integer :: total 
 real :: average1, average2  ! this declares 2 real values 
 complex :: cx 
 logical :: done 
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 character(len=80) :: line       ! a string consisting of 80 characters 

These can be used in statements such as: 

 total = 6.7 
 average1 = average2 
 done = .true.  
 line = “this is a line” 

Note that a character string is enclosed in double quotes (“).   

Constants can be assigned trivially to the complex number cx: 

 cx = (1.0, 2.0) ! cx = 1.0 + 2.0i 

If you need to assign variables to cx, you need to use cmplx: 

 cx = cmplx (1.0/2.0, -3.0) ! cx = 0.5 – 3.0i 
 cx = cmplx (x, y) ! cx = x + yi 

The function cmplx is one of the intrinsic functions (see below).   

Arrays 

A series of variables of the same type can be collected in an array.  Arrays can be one-
dimensional (like vectors in mathematics), two-dimensional (comparable to matrices), up 
to 7-dimensional.  Arrays are declared with the dimension attribute.   

Examples: 

 real, dimension(5) :: vector            ! 1-dim. real array containing 5 elements 
 integer, dimension (3, 3) :: matrix  ! 2-dim. integer array 

The individual elements of arrays can be referenced by specifying their subscripts.  Thus, 
the first element of the array vector, vector(1), has a subscript of one.  The array vector 
contains the real variables vector(1), vector(2), vector(3), vector(4), and vector(5).  The 
array matrix contains the integer variables matrix(1,1), matrix(2,1), matrix(3,1), 
matrix(1,2), ..., matrix(3,3): 

 

      vector(1)          vector(2)          vector(3)         vector(4)       vector(5) 

 

matrix(1,3)matrix(1,1) matrix(1,2)

matrix(2,1) 

matrix(3,1) 

matrix(2,2) matrix(2,3)

matrix(3,3)matrix(3,2)
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The array vector could also have been declared with explicit lower bounds: 

 real, dimension (1:5) :: vector 

All the following type declaration statements are legal: 

 real, dimension (-10:8) :: a1                   ! 1-dim array with 19 elements 
 integer, dimension (-3:3, -20:0, 1:2, 6, 2, 5:6, 2) :: grid1 ! 7-dim array 

The number of elements of the integer array grid1 is 7 x 21 x 2 x 6 x 2 x 2 x 2 = 14112.   

You may not be able to use arrays with more than 7 dimensions.  The standard requires 
that a compiler supports up to 7-dimensional arrays.  A compiler may allow more than 7 
dimensions, but it does not have to.   

Character strings 

The elements of a character string can be referenced individually or in groups.   

With: 

 character (len=80) :: name 
 name = “Tanja” 

Then 

 name(1:3) would yield the substring “Tan” 

A single character must be referenced in a similar way: 

 name(2:2) yields the character “a” 

If the lower subscript is omitted, it is assumed to be one, and if the upper subscript is 
omitted, it is supposed to be the length of the string.   

Thus: 

 name (:3) ! yields “Tan” 
 name (3:) ! yields “nja” 
 name (:) ! yields “Tanja” 

Implicit typing 

Fortran allows implicit typing, which means that variables do not have to be declared.  If 
a variable is not declared, the first letter of its name determines its type: if the name of the 
variable starts with i, j, k, l, m, or n, it is considered to be an integer, in all other cases it is 
considered to be a real.  However, it is good programming practice to declare all 
variables at the beginning of the program.  The statement 

 implicit none 

turns off implicit typing.  All programs should start with this statement.  (Implicit typing 
is not allowed in the F language).   
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Derived data types 

We have seen that the Fortran language contains 5 intrinsic types (integer, real, complex, 
logical, and character).  In addition to these, the user can define derived types, which can 
consist of data objects of different type. 

An example of a derived data type: 

 type :: atom 
     character (len=2) :: label 
     real :: x, y, z 
 end type atom 

This type can hold a 2-character atom name, as well as the atom’s xyz coordinates.   

An object of a derived data type is called a structure.  A structure of type atom can be 
created in a type declaration statement like: 

 type(atom) :: carbon1 

The components of the structure can be accessed using the component selector character 
(%): 

 carbon1%label = “C” 
 carbon1%x = 0.0000 
 carbon1%y = 1.3567 
 carbon1%z = 2.5000 

Note that no spaces are allowed before and after the %! 

One can also make arrays of a derived type: 

 type(atom), dimension (10) :: molecule 

and use it like 

 molecule(1)%type = “C” 

Arithmetic operators 

The intrinsic arithmetic operators available in Fortran 90 are: 

====================== 
 ** exponentiation 
====================== 
 * multiplication 
 / division 
====================== 
 + addition 
 − subtraction 
====================== 

These are grouped in order of precedence, thus, * has a higher precedence than +.  The 
precedence can be overridden by using parentheses.  For example: 

 3 * 2 + 1 
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yields 7, but 

 3 * (2+1) 

yields 9.   

For operators of equal strength the precedence is from left to right.  For example: 

 a * b / c 

In this statement, first a and b are multiplied, after which the results is divided by c.  The 
exception to this rule is exponentiation: 

 2**2**3 

is evaluated as 2**8, and not as 4**3.   

Numeric expressions 

An expression using any of the arithmetic operators (**, *, /, +, -), like the examples in 
the previous section, is called a numeric expression.   

Be careful with integer divisions!  The result of an integer division, i.e., a division in 
which the numerator and denominator are both integers, is an integer, and may therefore 
have to be truncated.  The direction of the truncation is towards zero (the result is the 
integer value equal or just less than the exact result): 

 3/2 yields 1 
 -3/2 yields –1 
 3**2 yields 9 
 3**(-2) equals 1/3**2, which yields 0 

Sometimes this is what you want.  However, if you do not want the result to be truncated, 
you can use the real function.  This function converts its argument to type real.  Thus, 
real(2) yields a result of type real, with the value 2.0.   

With the examples from above: 

 real(2)/3 yields 1.5 
 2/real(3) yields 1.5 
 -2/real(3) yields –1.5 
 real(3)**-2 yields 0.1111111111 (which is 1/9) 
However: 

real(2/3) yields 0 (the integer division is performed first, yielding 0, which is 
then converted to a real.)   

Note that the function real can have 2 arguments (see the table in the section on intrinsic 
functions, below).   The second argument, an integer specifying the precision (kind value) 
of the result, is however optional.  If not specified, the conversion will be to default 
precision.  Kind values will be discussed later.   
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Numeric expressions can contain operands of different type (integer, real, complex).  If 
this is the case, the type of the “weaker” operand will be first converted to the “stronger” 
type.  (The order of the types, from strong to weak, is complex, real, integer.)  The result 
will also be of the stronger type.   

If we consider the examples above again, in 

 real(2)/3 

The integer 3 is first converted to a real number 3.0 before the division is performed, and 
the result of the division is a real number (as we have seen).   

Logical operators 

The type logical can have only two different values: .true. and .false. (note the dots 
around the words true and false).  Logical variables can be operated upon by logical 
operators.  These are (listed in decreasing order of precedence): 

================== 
 .not. 
 .and. 
 .or. 
 .eqv. and .neqv. 
================== 

The .and. is “exclusive”: the result of a .and. b is .true. only if the expressions a and b 
are both true.  The .or. is “inclusive”: the result of a .or. b is .false. only if the 
expressions a and b are both false.  Thus, if we have the logical constants: 

 logical, parameter :: on = .true. 
 logical, parameter :: off = .false. 

Then: 

 .not. on ! equals .false. 
 .not. off ! equals .true. 
 on .and. on ! equals .true. 
 on .and. off ! equals .false. 
 off .and. off ! equals .false. 
 on .or. on ! equals .true. 
 on .or. off ! equals .true. 
 off .or. off !equals .false. 
 on .eqv. on ! equals .true. 
 on .eqv. off ! equals .false. 
 off .eqv. off ! equals .true. 
 on .neqv. on !equals .false. 
 on .neqv. off ! equals .true. 
 off .neqv. off ! equals .false. 

Relational operators 

Relational operators are operators that are placed between expressions and that compare 
the results of the expressions.  The relational operators in Fortran 90 are: 
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============================== 
 < less than 
 <= less than or equal to 
 > greater than 
 >= greater than or equal to 
 == equal to 
 /= not equal to 
============================== 

Logical expressions 

Expressions that use the relational operators are logical expressions.  The values of 
logical expressions can be either .true. or .false.  Note that the range of numerical 
numbers in Fortran ranges from the largest negative number to the largest positive 
number (thus, -100.0 is smaller than 0.5).  

A few examples: 

 real :: val1, val2 
 logical :: result 

 val1 = -3.5 
 val2 =  2.0 

 result = val1 < val2 ! result equals .true. 
 result = val1 >= val2 ! result equals .false. 
 result = val1 < (val2 – 2.0) ! result equals .true. 

Be careful though with comparing real numbers.  Reals are represented with finite 
accuracy.  Thus: 

 print*, 2 * 3.2 

may give as output: 6.4000001.  So instead of comparing two real variables a and b like: 

 a == b 

it is safer to compare their difference: 

 real, parameter :: delta = 0.000001 
 abs(a-b) < delta        ! equals .true. if a and b are numerically identical 

The function abs returns the absolute value of (a-b).   

Intrinsic functions 

Intrinsic functions are functions that are part of the language.  Fortran, as a scientific 
language aimed at numerical applications, contains a large number of mathematical 
functions.   
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The mathematical functions are: 

============================================ 
 acos (x) inverse cosine (arc cosine) function 
 asin (x) inverse sine (arc sine) function 
 atan (x) inverse tangent (arc tangent) function 
 atan2 (x) arc tangent for complex numbers 
 cos (x) cosine function 
 cosh (x) hyperbolic cosine function 
 exp (x) exponential function 
 log (x) natural logarithm function 
 log10 (x) common logarithm function 
 sin (x) sine function 
 sinh (x) hyperbolic sine function 
 sqrt (x) square root function 
 tan (x) tangent function 
 tanh (x) hyperbolic tangent function 
============================================ 
Some other useful intrinsic functions are: 

=============================================================== 
 abs (x) absolute value of the numerical argument x 
 complx (x,y [, ikind]) convert to complex.  The ikind argument is optional.  If 

not specified, the conversion is to default precision.   
 floor (x) greatest integer less than or equal to x.  Examples: floor 

(3.4) equals 3, floor (-3.4) equals –4.   
 int (x) convert to integer.  If abs (x < 1), the result is 0.  If abs 

(x) >= 1, the result is the largest integer not exceeding x 
(keeping the sign of x).  Examples: int(0.3) equals 0, int (-
0.3) equals 0, int (4.9) equals 4, int (-4.9) equals –4.   

 nint (x [, ikind]) rounds to nearest integer.   
 real (x [, ikind]) convert to real.  The ikind argument is optional.  If not 

specified, the conversion is to default precision.   
 mod (a,p) remainder function.  Result is a – int (a/p) * p.  The 

arguments a and p must be of the same type (real or 
integer).   

 modulo (a,p)  modulo function.  Result is a – floor (a/p) * p.  The 
arguments a and p must be of the same type (real or 
integer).   

============================================================== 

Simple in- and output 

As we have seen in the hello.f90 program above, characters can be displayed on the 
screen by the print* statement.  Data can be transferred into the program by the read* 
statement.  This is the simplest form of input/output (I/O), called list-directed 
input/output.  As an example, with pi being declared as in the previous section, the 
statement 
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 print*, “The number pi = “, pi 

might appear on the screen as 

 The number pi = 3.141590 

The exact format is dependent on the computer system used.  Later we will see a more 
sophisticated form of I/O, using read and write, which gives the programmer more 
control over the format.   

The following read statement (with x, y, and z being declared as variables of type real) 

 read*, x, y, z 

expects three numbers to be typed, separated by a comma, one or more spaces, or a slash 
(/).  The variable x will have the value of the first number typed, y will have the value of 
the second number typed, and z of the third number typed.   

Comments 

We have already seen the exclamation mark (!).  All characters after the exclamation 
mark are ignored.  Comments can be used for descriptive purposes, or for “commenting 
out” a line of code.   

Continuation lines 

The maximum length of a Fortran statement is 132 characters.  Sometimes statements are 
so long that they don’t fit on one line.  The continuation mark (&), placed at the end of 
the line, allows the statement to continue on the next line.  Fortran 90 allows a maximum 
of 39 continuation lines.   

Thus, the following code 

 cos (alpha) = b*b + c*c –          & 
     2*b*c*cos (gamma) 

is identical to 

 cos (alpha) = b*b + c*c – 2*b*c*cos (gamma) 

Summary 

• A program starts with program program_name and ends with end program 
program_name.   

• The first statement should always be implicit none.   
• We have learned the different types of variables and constants in Fortran: integer, 

real, complex, logical and character, and how to declare them in type 
declaration statements.   

• The arithmetic operators: **, *, /, + and -.   
• The logical operators: .not., .and., .or., .eqv., and .neqv.   
• The relational operators: <, <=, >, >=, == and /=.   
• We learned the mathematical functions, and a selection of other intrinsic functions.   
• We learned how to read in variables and how to write to the screen.   
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Exercises 

1. Which of the following are valid names in Fortran 90: 
a. this_is_a_variable 
b. 3dim 
c. axis1 
d. y(x) 
e. dot.com 
f. DotCom 
g. z axis 

2. Write a program that reads in a number, and computes the area of a circle that has a 
diameter of that size.   

3. Find out, for your compiler, what the compiler flags are for displaying warning 
messages, and for issuing a warning when the compiler encounters non-standard 
source code.   

4. Write a program that reads in a time in seconds, and computes how many hours and 
minutes it contains.  Thus, 3700 should yield: 1 hour, 1 minute, and 40 seconds.  
(Hint: use the mod function).   

3. Control Constructs 
Control Constructs 

A program can consist of several statements, which are executed one after the other: 

 program program_name 

     implicit none 

     statement1 
     statement2 
     statement3 
     statement4 

 end program_name 

However, this rigid sequence may not suit the formulation of the problem very well.  For 
example, one may need to execute the same group of statements many times, or two 
different parts of the program may need to be executed, depending on the value of a 
variable.  For this, Fortran 90 has several constructs that alter the flow through the 
statements.  These include if constructs, do loops, and case constructs.   

If constructs:  

The simplest form of an if construct is: 

 if (logical expression) then  
     statement 
 end if 
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as in: 

 if (x < y) then 
     x = y 
 end if 

The statement x = y is only executed if x is smaller than y.   

Several statements may appear after the logical expression.  The if block can also be 
given a name, so the more general form of the if construct is: 

 [name:] if (logical expression) then 

     ! various statements 
          . . .  

 end if [name] 

Both endif and end if are allowed.  The name preceding the if is optional (but if it is 
specified, the name after the endif must be the same). 

The block if statement can also contain an else block: 

 [name:] if (logical expression) then 

      ! various statements 
      . . .  

  else 

      ! some more statements 
      . . .  

  end if [name] 
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Block if statements can be nested: 

 [name:] if (logical expression 1) then 

      ! block 1 

  else if (logical expression 2) then 

      ! block 2 

  else if (logical expression 3) then 

      ! block 3 

  else 

      ! block 4 

  end if [name] 

Example (try to follow the logic in this example): 

   if ( optimisation ) then 
       print*, "Geometry optimisation: " 

       if ( converged ) then 
           print*, "Converged energy is ", energy 
       else 
           print*, "Energy not converged. Last value: ", energy 
       end if 

   else if (singlepoint ) then 
       print*, "Single point calculation: " 
       print*, "Energy is ", energy 
   else 
       print*, "No energy calculated." 
   end if 

Indentation is optional, but highly recommended: a consistent indentation style helps to 
keep track of which if, else if, and end if belong together (i.e., have the same “if level”).    

Do loops 

A program often needs to repeat the same statement many times.  For example, you may 
need to sum all elements of an array.   
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You could write: 

 real, dimension (5) :: array1 
 real :: sum 

 ! here some code that fills array1 with numbers 
 . . .  

 sum = array1(1) 
 sum = sum + array1(2) 
 sum = sum + array1(3) 
 sum = sum + array1(4) 
 sum = sum + array1(5) 

But that gets obviously very tedious to write, particularly if array1 has many elements.  
Additionally, you may not know beforehand how many times the statement or statements 
need to be executed.  Thus, Fortran has a programming structure, the do loop, which 
enables a statement, or a series of statements, to be carried out iteratively.   

For the above problem, the do loop would take the following form: 

 real, dimension (5) :: array1 
 real :: sum 
 integer :: i        ! i is the “control variable” or counter 

 ! here some code that fills array1 with numbers 
 . . .  

 sum = 0.0    ! sum needs to be initialised to zero 
 do i = 1, 5 
     sum = sum + array1(i) 
 end do 

Both enddo and end do are allowed.   

It is possible to specify a name for the do loop, like in the next example.  This loop prints 
the odd elements of array2 to the screen.  The name (print_odd_nums in this case) is 
optional.  The increment 2 specifies that the counter i is incremented with steps of 2, and 
therefore, only the odd elements are printed to the screen.  If no increment is specified, it 
is 1.  

 real, dimension (100) :: array2 
 integer :: i 

 ! here some code that fills array2 with numbers 
 . . .  

 print_odd_nums:   do i = 1, 100, 2 
                                    print*, array2(i) 
                               end do print_odd_nums 
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Do loops can be nested (one do loop can contain another one), as in the following 
example: 

 real, dimension (10,10) :: a, b, c   ! matrices 
 integer :: i, j, k 

 ! here some code to fill the matrices a and b 
 . . .  

 ! now perform matrix multiplication: c = a + b 
 do i = 1, 10 
     do j = 1, 10 
         c(i, j) = 0.0 
         do k = 1, 10 
             c(i, j) = c(i, j) + a(i, k) + b(k, j) 
         end do 
     end do 
 end do 

Note the indentation, which makes the code more readable.   

Endless Do 

The endless do loop takes the following form: 

 [doname:] do 
      ! various statements 
      exit [doname] 
      ! more statements 
  end do [doname] 

Note the absence of the control variable (counter).  As before, the name of the do loop is 
optional (as indicated by the square brackets).   

To prevent the loop from being really “endless”, an exit statement is needed.  If the exit 
statement is executed, the loop is exited, and the execution of the program continues at 
the first executable statement after the end do.   

The exit statement usually takes the form  

 if (expression) then 
     exit 
 end if 

 19



Fortran 90/95 Programming Manual  

as in the following example:  

 program integer_sum 
 ! this program sums a series of numbers given by the user 
 ! example of the use of the endless do construct 

 implicit none 
 integer :: number, sum 

 sum = 0 
 do 
     print*, “give a number (type –1 to exit): “ 
     read*, number 

     if (number == -1) then 
         exit 
     end if 

     sum = sum + number 
 end do 

 print*, “The sum of the integers is “, sum 

 end program integer_sum 

The name of the do loop can be specified in the exit statement.  This is useful if you want 
to exit a loop in a nested do loop construct: 

 iloop: do i = 1, 3 
      print*, "i: ", i 
      jloop: do j = 1, 3 
         print*, "j: ", j 
         kloop: do k = 1, 3 
              print*, "k: ", k 

              if (k==2) then 
                  exit jloop 
         end do kloop 

      end do jloop 
 end do iloop 

When the exit statement is executed, the program continues at the next executable 
statement after end do jloop.  Thus, the first time that exit is reached is when i=1, j=1, 
k=2, and the program continues with i=2, j=1, k=1.   

A statement related to exit is the cycle statement.  If a cycle statement is executed, the 
program continues at the start of the next iteration (if there are still iterations left to be 
done).   
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Example: 

 program cycle_example 

     implicit none 

     character (len=1) :: answer 
     integer :: i 

     do i = 1, 10 

         print*, “print i (y or n)?” 
         read*, answer 

         if (answer == “n”) then 
             cycle 
         end if 

         print*, i 

     end do 

 end program cycle_example 

Case constructs 

The case construct has the following form: 

 [name:] select case (expression) 
      case (selector1) 
          ! some statements 
          . . .  
      case (selector2) 
          ! other statements 
          . . .  
      case default 
          ! more statements 
          . . .  
  end select [name] 

As usual, the name is optional.  The value of the selector, which can be a logical, 
character, or integer (but not real) expression, determines which statements are executed.  
The case default block is executed if the expression in select case (expression) does 
not match any of the selectors.   

A range may be specified for the selector, by specifying an lower and upper limit 
separated by a colon: 

 case (low:high) 
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Example: 

 select case (number) 

     case ( : -1) 
         print*, “number is negative” 

     case (0) 
         print*, “number is zero” 

     case (1 : ) 
         print*, “number is positive” 

 end select 

The following example program asks the user to enter a number between 1 and 3.  The 
print and read are in an endless loop, which is exited when a number between 1 and 3 has 
been entered.   

 program case_example 

     implicit none 

     integer :: n 

     ! Ask for a number until 1, 2, or 3 has been entered 
     endless: do 

          print*, "Enter a number between 1 and 3: " 
          read*, n 

          select case (n) 
          case (1) 
               print*, "You entered 1" 
               exit endless 
          case (2) 
               print*, "You entered 2" 
               exit endless 
          case (3) 
               print*, "You entered 3" 
               exit endless 
          case default 
               print*, "Number is not between 1 and 3" 
          end select 

     end do endless 

 end program case_example 
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Summary 

In this chapter we learned the following control constructs: 

block if statements.   • 

• 

• 

do loops (including endless do loops).   

case statements.   

Exercises 

5. Write a program which calculates the roots of the quadratic equation ax2 + bx + c = 0.  
Distinguish between the three cases for which the discriminant (b2 - 4ac) is positive, 
negative, or equal to zero.  Use an if construct.  You will also need to use the intrinsic 
function cmplx.   

6. Consider the Fibonacci series:  
 1   1   2   3   5   8   13 … 
 Each number in the series (except the first two, which are 1) is the sum from the two 

previous numbers.  Write a program that reads in an integer limit, and which prints 
the first limit terms of the series.  Use an nested if block structure.  (You need to 
distinguish between several cases: limit < 0, limit =1, etc.) 

7. Rewrite the previous program using a case construct.   

8. Write a program that 
defines an integer array to have 10 elements 
a) fills the array with ten numbers 
b) reads in 2 numbers (in the range 1-10) 
c) reverses the order of the array elements in the range specified by the two numbers.   
Try not to use an additional array.   

9. Write a program that reads in a series of integer numbers, and determines how many 
positive odd numbers are among them.  Numbers are read until a negative integer is 
given.  Use cycle and exit.  

4. Procedures 
Program units 

A program can be built up from a collection of program units (the main program, 
modules and external subprograms or procedures).  Each program must contain one (and 
only one) main program, which has the familiar form: 

 program program_name 

     implicit none 
     ! type declaration statements 
     ! executable statements 

 end program program_name 

Modules will be discussed later.   
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Procedures 

A subprogram or procedure is a computation that can be “called” (invoked) from the 
program.  Procedures generally perform a well-defined task.  They can be either 
functions or subroutines.  Information (data) is passed between the main program and 
procedures via arguments.  (Another way of passing information is via modules, see 
Chapter 6.)  A function returns a single quantity (of any type, including array), and 
should, in principle, not modify any of its arguments.  (In the stricter F language, a 
function is simply not allowed to modify its arguments).  The quantity that is returned is 
the function value (having the name of the function).  We have already seen one type of 
functions in Chapter 2, namely built-in or intrinsic functions, which are part of the 
Fortran 90 language (such as cos or sqrt).   

An example of a function: 

 function circle_area (r) 
 ! this function computes the area of a circle with radius r 

     implicit none 

     ! function result 
     real :: circle_area 

     ! dummy arguments 
     real :: r 

     ! local variables 
     real :: pi 

     pi = 4 * atan (1.0) 
     circle_area = pi * r**2 

 end function circle_area 

The structure of a procedure closely resembles that of the main program.  Note also the 
use of implicit none.  Even if you have specified implicit none in the main program, you 
need to specify it again in the procedure.   

The r in the function circle_area is a so-called dummy argument.  Dummy arguments are 
replaced by actual arguments when the procedure is called during execution of the 
program.  Note that the function has a “dummy arguments” block and a “local variables” 
block, separated by comments.  While this is not required, it makes the program clearer.   

The function can be used in a statement like: 

 a = circle_area (2.0) 

This causes the variable a to be assigned the value 4π.   

This is, by the way, not a very efficient way to calculate the area of a circle, as π is 
recalculated each time this function is called.  So if the function needs to be called many 
times, it will be better to obtain π differently, for example by declaring: 

 real, parameter :: pi = 3.141592654 
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The result of a function can be given a different name than the function name by the 
result option: 

function circle_area (r) result (area) 
 ! this function computes the area of a circle with radius r 

     implicit none 

     ! function result 
     real :: area 

     ! dummy arguments 
     real :: r 

     ! local variables 
     real, parameter :: pi = 3.141592654 

     area = pi * r**2 

 end function circle_area 

The name specified after result (area in this case) must be different from the function 
name (circle_area).  Also note the type declaration for the function result (area).  This 
function is used in the same way as before: 

 a = circle_area (radius) 

The result option is in most cases optional, but it is required for recursive functions, i.e., 
functions that call themselves (see paragraph on “recursive functions” below).   

An example of a subroutine: 

 subroutine swap (x, y) 

     implicit none 

     ! dummy arguments 
     real :: x, y 

     ! local variables 
     real :: buffer 

     buffer = x                    ! store value of x in buffer 
     x = y 
     y = buffer 

 end subroutine swap 

A subroutine is different from a function in several ways.  Subroutines can modify their 
arguments, and they do not return a single “result” as functions do.  Functions return a 
value that can be used directly in expressions, such as: 

 a = circle_area (radius) 

A subroutine must be “call”ed, as in: 

 call swap (x,y) 

 25



Fortran 90/95 Programming Manual  

The general rule is that it is best to use a function if the procedure computes only one 
result, and does not much else.  In all other cases, use a procedure.   
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External procedures 

An example of a program that contains two functions: 

 program angv1v2 

     implicit none 

     real, dimension (3) :: v1, v2 
     real :: ang 

     ! define two vectors v1 and v2 

     v1(1) = 1.0 
     v1(2) = 0.0 
     v1(3) = 2.0 

     v2(1) = 1.5 
     v2(2) = 3.7 
     v2(3) = 2.0 

     print*, "angle  = ", ang (v1, v2) 

 end program angv1v2 

 ! ang computes the angle between 2 vectors vect1 and vect2 
 function ang (vect1, vect2 ) 

     implicit none 

     ! function result 
     real :: ang 

     ! dummy arguments 
     real, dimension (3), intent (in) :: vect1, vect2 

     ! local variables 
     real :: cosang, norm 

     cosang = vect1(1)*vect2(1) + vect1(2)*vect2(2) + vect1(3)*vect2(3) 
     cosang = cosang / (norm(vect1)*norm(vect2)) 
     ang = acos (cosang) 

 end function ang 

 ! norm returns the norm of the vector v 
 function norm (v) 

     implicit none 

     real :: norm 

     ! dummy arguments 
     real, dimension (3) :: v 

     norm = sqrt ( v(1)**2 + v(2)**2 + v(3)**2) 

 end function norm 
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This program illustrates that the actual argument (v1 and v2) may have a name different 
from the dummy arguments vect1 and vect2 of the function ang.  This allows the same 
function to be called with different arguments.  The intent attribute is explained in the 
next paragraph.  Note that the type of the function norm must be declared in the function 
ang.  An alternative to this is to provide an explicit interface, see section on Interfaces 
below.   

As mentioned before, a subroutine must be “call”ed, as the following program illustrates: 

 program swap_xy 

     implicit none 
     real :: x, y 

     x = 1.5 
     y = 3.4 
     print*, “x = “, x, “ y = “, y 
     call swap (x,y) 
     print*, “x = “, x, “ y = “, y 

 end program swap_xy 

 subroutine swap (x, y) 

     implicit none 

     ! dummy arguments 
     real, intent (inout) :: x, y 

     ! local variables 
     real :: buffer 

     buffer = x                    ! store value of x in buffer 
     x = y 
     y = buffer 
 end subroutine swap 

When executed, this program gives as output: 
 x = 1.5  y = 3.4 
 x = 3.4  y = 1.5 
(The exact format of the displayed numbers is dependent on the computer system used.) 

Note that the functions appear after the end of the main program.  Subroutines or 
functions that are not contained in the main program are called external procedures.  
These are the most common type of procedures.  External procedures are stand-alone 
procedures, which may be developed and compiled independently of other procedures 
and program units.  The subroutines do not have to be in the same file as the main 
program.  If the two functions in the example program angv1v2 above are in a file 
vector.f90, and the main program is in a file called angle.f90, then a compilation of the 
program may look like this (for the SGI MIPS Fortran 90 compiler for example.  The 
actual format of the compilation is compiler-specific, and may look different with another 
compiler): 

 28



Fortran 90/95 Programming Manual  

 f90 –ansi –fullwarn –o angle angle.f90 vector.f90 

The compiler flag –ansi causes the compiler to generate messages when it encounters 
source code that does not conform to the Fortran 90 standard, -fullwarn turns on all 
warning messages, and –o specifies the name of the output file, to which the executable 
will be written to.   

The compilation can also be done in two steps: 
 f90 –ansi –fullwarn –c angle.f90 vector.f90 
 f90 –ansi –fullwarn –o angle angle.o vector.o 

The first step creates binary object files vector.o and angle.o.  The second (link) step 
creates the executable (angle).   

Intent 

Fortran allows the specification of the “intention” with which arguments are used in the 
procedure: 

intent (in): Arguments are only used, and not changed 
intent (out): Arguments are overwritten 
intent (inout): Arguments are used and overwritten 

Consider the following example: 

 subroutine intent_example (a, b, c) 

     implicit none 

     ! dummy arguments 
     real, intent (in) :: a 
     real, intent (out) :: b 
     real, intent (inout) :: c 

     b = 2 * a 
     c = c + a * 2.0 

 end subroutine intent_example 

In this subroutine, a is not modified, and thus has intent (in); b is given a value and has 
therefore intent (out); c is used and modified, intent (inout).  It is good programming 
practice to use intent.  Firstly, it makes procedures more transparent, i.e., it is clearer 
what the procedure does.  Secondly, the compiler may catch programming mistakes, 
because most compilers will warn you if you, for example, try to modify an argument 
that has intent (in).  Thirdly, it may help optimisation if the compiler knows which 
arguments are changed in a subroutine.   
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Even though it is advisable to use intent, it is possible to introduce bugs in the program 
by giving arguments the wrong intent.  Consider the following code: 

 program test 

     implicit none 

     integer, dimension (10) :: array 
     integer :: i 

     do i = 1, 10 
         array(i) = i 
     end do 

     call modify_array (a) 

 end program test 

 subroutine modify_array (a) 

     implicit none 

     ! dummy arguments 
     integer, dimension (10), intent (inout) :: a 

     ! local variables 
     integer :: i 

     do i = 1,3 
         a(i) = 0.0 
    end do 

 end subroutine modify_array 

The intent of array a in the subroutine has to be inout, even though it seems like you are 
only writing into the array, and do not need to know the values of its elements.  If you 
would make the intent out however, then it is possible that, after calling the subroutine, 
the elements a(4) to a(10) contain “garbage” (unpredictable contents), because the 
subroutine did not read in these elements (so cannot know their values), but did write 
them out (thereby overwriting their previous values).   

Interfaces 

The interface of a procedure is a collection of the names and properties of the procedure 
and its arguments.  When a procedure is external, the compiler will (in most cases) not 
know about its interface, and cannot check if the procedure call is consistent with the 
procedure declaration (for example, if the number and types of the arguments match).   

Providing an explicit interface makes such cross-checking possible.  It is thus good 
programming practice to specify interfaces for external procedures.  In certain cases, an 
interface is required.  So it is best to   provide an explicit interface for external procedures.  
(For space-saving reasons, the example programs in this manual do not always have 
them).   
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The interface block contains the name of the procedure, and the names and attributes 
(properties) of all dummy arguments (and the properties of the result, if it defines a 
function).  

If we take as example the program swap_xy from above, then the interface for the 
subroutine swap would look like: 

 interface 
     subroutine swap (x, y) 
         real, intent (inout) :: x, y 
     end subroutine swap 
 end interface 

The interface block is placed at the beginning of the program (or at the beginning of a 
procedure), together with the declaration statements: 

 program swap_xy 

     implicit none 

     ! local variables 
     real :: x, y 

     ! external procedures 
     interface 
         subroutine swap (x, y) 
             real, intent (inout) :: x, y 
         end subroutine swap 
     end interface 

     x = 1.5 
     y = 3.4 
     print*, “x = “, x, “ y = “, y 
     call swap (x,y) 
     print*, “x = “, x, “ y = “, y 

 end program swap_xy 

 subroutine swap (x, y) 

     implicit none 

     ! dummy arguments 
     real, intent (inout) :: x, y 

     ! local variables 
     real :: buffer 

     buffer = x                    ! store value of x in buffer 
     x = y 
     y = buffer 

 end subroutine swap 
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If a procedure proc1 calls another procedure proc2, then the interface block of proc2 
should be placed at the beginning of the procedure proc1.   

Another way of providing explicit interfaces will be discussed in the chapter on Modules 
(Chapter 6).   

Recursive procedures 

A procedure that calls itself (directly or indirectly) is called a recursive procedure.  Its 
declaration must be preceded by the word recursive.  When a function is used recursively, 
the result option must be used.   

The factorial of a number (n!) can be computed using a recursive function: 

 recursive function nfactorial (n) result (fac) 
 ! computes the factorial of n (n!) 

     implicit none 

     ! function result 
     integer :: fac 

     ! dummy arguments 
     integer, intent (in) :: n 

     select case (n) 
         case (0:1) 
             fac = 1 
         case default 
             fac = n * nfactorial (n-1) 
     end select 

 end function nfactorial 

Internal procedures 

Internal procedures are contained within a program unit.  A main program containing 
internal procedures has the following form: 

 program program_name 
     implicit none 
         ! type declaration statements 
         ! executable statements 
     . . .  
     contains 
         ! internal procedures 
     . . .  
 end program program_name 
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With our function circle_area from above: 

 program area 

     implicit none 
     real :: radius, a 

     radius = 1.4 
     a = circle_area (radius) 
     print*, “The area of a circle with radius “, radius, “ is “, a 

 contains 

     function circle_area (r) 
     ! this function computes the area of a circle with radius r 

         implicit none 

         ! function result 
         real :: circle_area 

         ! dummy arguments 
         real, intent (in) :: r 

         ! local variables 
         real, parameter :: pi = 3.141592654 

         circle_area = pi * r**2 

     end function circle_area 

 end program area 

An internal procedure is local to its host (the program unit containing the internal 
procedure), and the environment (i.e., the variables and other declarations) of the host 
program is known to the internal procedure.   

Thus, the function circle_area knows the value of the variable radius, and we could 
have written the function also like: 

     function circle_area 
     ! this function computes the area of a circle with radius r 

         implicit none 

         ! function result 
         real :: circle_area 

         ! local variables 
         real, parameter :: pi = 3.141592654 

         circle_area = pi * radius**2 

     end function circle_area 

 end program area 
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and simple called the function like: 

 a = circle_area 

However, the first form allows the function to be called with varying arguments (and it 
more transparent as well): 

 a1 = circle_area (radius) 
 a2 = circle_area (3.5) 

Internal procedures are not very common.  In most cases, it is better to use external 
procedures.  External procedures can be called from more than one program unit, and 
they are safer: The variables of the calling program are hidden from the procedure, i.e., 
the procedure does not know the values of the variables (unless they are passed as 
arguments), and it can only change them if they are passed as arguments with intent 
(inout).  However, an advantage of internal procedures is that they can be better 
optimised by the compiler.   

Assumed character length 

A character dummy argument can be declared with an asterisk for the length the len 
parameter.  This allows the procedure to be called with character strings of any length.  
The length of the dummy argument is taken from that of the actual argument.   

Example: 

 program assumed_char 

     implicit none 

     character (len=5) :: name 

     name = “Tanja” 
     call print_string (name) 

 end program assumed_char 

 subroutine print_string (name) 

     implicit none 

     ! dummy arguments 
     character (len=*), intent (in) :: name 

     print*, name 

 end subroutine print_string 

Summary 

This chapter discussed how to break a program down into manageable units, which each 
correspond to a specific programming task.  The program units we saw in this chapter 
are: 

• The main program 
• External procedures (subroutines and functions) 
• Internal procedures (subroutines and functions) 
• Recursive procedures 
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Good programming practice requires the use of the intent attribute for the dummy 
arguments of procedures, and the use of interface blocks for external procedures.   

Exercises 

Choose any two of exercises 11-13: 

10. Write a program that, given the xyz coordinates of four atoms, returns the dihedral 
between the atoms.  The dihedral (or torsion) angle of four atoms A-B-C-D is defined 
as the angle between the plane containing the atoms A, B, and C, and the plane 
containing B, C, and D.   

 
A 

C
B 

D
β 

 
 
 
 
 
 
 
 
 
11. Consider the Fibonacci series:  
 1   1   2   3   5   8   13 … 
 Each number in the series (exceptt the first 2, which are 1) is the sum from the two 

previous numbers.  Write a program that computes the nth number in the Fibonacci 
series, where n is given by the user.  Use a recursive function.   

12. Bubble sort.   
Create an unordered data set of integers (for example by reading them in), and write 
a subroutine to sort them in ascending order.  One of the easiest sort algorithms is 
bubble sort.  Start at the lower end of the array.  Compare elements 1 and 2, and 
swap them if necessary.  Then proceed to the next 2 elements (2 and 3), and continue 
this process through the entire array.  Repeat the whole process ndim (dimension of 
array) times.  Note that in successive rounds you only have to go through smaller and 
smaller sections of the array, because the last element(s) should now already be 
sorted.  This process is called “bubble sort” because the larger elements appear to 
bubble through the array to reach their places.   

5 More on Arrays 
Declaring arrays 

In chapter 2 we have seen that we can declare arrays with the dimension attribute: 

 real, dimension (3) :: coords ! 1-dimensional real array 
 integer, dimension (10,10) :: block ! 2-dimensional integer array 

Up to seven dimensions are allowed.   
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An alternative way of declaring these arrays is as follows: 

 real :: coords(3) 
 integer :: block(10,10) 

In this manual, the first method is used.   

Arrays can also be declared with explicit lower bounds.  For the above arrays: 

 real, dimension (1:3) :: coords 
 integer, dimension (-5:5, 0:9) :: block 

The type declaration statement for the array block shows that the lower bound does not 
have to be 1.  If the lower bound is not specified explicitly, it is taken to be 1.   

Array terminology 

Rank: The rank of an array is the number of dimensions it has.  In our examples above, 
the rank of coords is 1 and the rank of block is 2.   

Extent: The number of elements along a dimension is its extent.  Thus, the extent of 
coords is 3 and the extent of both the first and second dimension of block is 10.   

Shape: The shape of an array is a one-dimensional integer array, containing the number 
of elements (the extent) in each dimension.  Thus, the shape of array coords is (3 ), and 
the shape of block is (10,10).  Two arrays of the same shape are “conformable”.   

Size: The size of an array is the number of elements it contains.  The size of coords is 3 
and the size of block is 100.   

Array assignment statements 

Array elements can be given a value in the usual way: 

 coords(1) = 3.5 
 block(3,2) = 7 

Or in a loop: 

 do i = 1,3 
     coords(i) = 0.0 
 end do 

For arrays of rank one (one-dimensional arrays), the following shorthand notation is also 
possible: 

 coords = (/ 1.3, 5.6, 0.0 /) 

These shorthand notations of “constructing” the array elements are called array 
constructors.  Note that the “(/” and “/)” are a single symbol, thus, no spaces are allowed 
between the ( and / characters.   
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The following constructors are also allowed: 

 coords = (/ (2.0*i, i = 1, 3) /) ! yields (2.0, 4.0, 6.0) 
 odd_ints = (/ (i, i = 1, 10, 2) /) ! yields (1, 3, 5, 7, 9) 

These two examples use so-called implied do loops.  Note the additional parentheses 
around the implied do loop.   

The array constructors allow the definition of array constants: 

 integer, dimension (8), parameter :: primes = (/ 1, 2, 3, 7, 11, 13, 17, 19 /) 

Array sections 

Sections of arrays can be referenced.  For example, consider an integer array a with 
dimension (3,4).   

a(1,1) a(1,2) a(1,3) 

a(2,2) a(2,3) a(2,1) 

a(3,1) a(3,2) a(3,3) 

a(1,4) 

a(2,4) 

a(3,4) 

Then, a(1:2, 3) references the elements a(1,3) and a(2,3).  The whole last column can be 
referenced as a(1:3,4) or simply a(:, 4), and the first row as a(1, :).  Optionally, a stride 
can be specified as well.  The syntax is (for each dimension): 

[lower] : [upper] [ : stride] 

In a(1, 1:4:2) lower= 1, upper = 4 and stride = 2 (for the second dimension).  Thus, a(1, 
1:4:2) references the elements a(1,1) and a(1,3).   

Array expressions 

The arithmetic operators (**, *, /, +, -) can be applied to arrays (or array sections) that 
have the same shape (are conformable).   

For example, a two-dimensional array b(2,3) can be added to the array section a(2:3, 1:3) 
of the array a of the previous section.  If the array c is an array of dimension (2,3), then 
the expression 

 c = a(2:3,1:3) + b 

causes the elements of the array c to have the following values: 

 c(1,1) = a(2,1) + b(1,1) 
 c(2,1) = a(3,1) + b(2,1) 
 c(1,2) = a(2,2) + b(1,2) 
 c(2,2) = a(3,2) + b(2,2) 
 c(1,3) = a(2,3) + b(1,3) 
 c(2,3) = a(3,3) + b(2,3) 
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The same can be achieved by using a do loop: 

 do i = 1, 3 
     do j = 1, 2 
         c(j,i) = a(j+1,i) + b(j,i) 
     end do 
 end do 

But the expression c = a(2:3,1:3) + b is clearly more concise.   

The operator + in the above example can be replaced by any of the other arithmetic 
operators.  The following expressions are all valid: 

 c = a(2:3,1:3) * b ! c(1,1) = a(2,1) * b(1,1), etc.  
 c = a(2:3,1:3) / b ! c(1,1) = a(2,1) / b(1,1), etc.  
 c = a(2:3,1:3) – b ! c(1,1) = a(2,1) - b(1,1), etc.  
 c = a(2:3,1:3) ** b ! c(1,1) = a(2,1) ** b(1,1), etc.  

Note that the operation is done element by element.  Thus, the result of the multiplication 
a(2:3,1:3) * b is not a matrix product!   

Scalars can be used in an array expression as well.  Thus, a / 2.0 has the effect of 
dividing all elements of the array a by 2.0, and a**2 raises all the elements of a to the 
power 2.   

Array expressions can be used to avoid do-loops.  For example, the expression 

 a(1:4) = a(2:5) 

Is equivalent to  

 do i = 1, 4 
     a(i) = a(i+1) 
 end do 

However, if the do loop iterations are interdependent, then the do loop and the array 
expression are not equivalent.  This is because in the do loop the elements of the array are 
updated after each iteration, and in the array expression the updating is done only after all 
the elements have been processed.   

For example, if the array a contains the numbers 1, 2, 3, 4, 5, then 

 do i = 1,4 
     a(i+1) = a(i) 
 end do 

yields 1, 1, 1, 1, 1 

(After the first iteration, the array contains 1, 1, 3, 4, 5, after the second 1, 1, 1, 4, 5, after 
the third 1, 1, 1, 1, 5 and after the fourth 1, 1, 1, 1, 1).   

However,  

 a(2:5) = a(1:4) 

yields 1, 1, 2, 3, 4.   
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Using array syntax instead of do loops may help an optimising compiler to optimise the 
code better in specialised cases (for example on a parallel machine).   

Dynamic arrays 

Sometimes you don’t know the necessary size of an array until the program is run, the 
size may for example depend on some calculations, or be defined by the user.  In Fortran 
90, this can be done by using dynamic arrays.  A dynamic array is an array of which the 
size is not known at compile time (the rank must be specified, however), but becomes 
known when running the program.   

A dynamic array has to be declared with the attribute allocatable, and it has to be 
“allocated” when its size is known and before it is used. 

 program dynamic_array 

     implicit none 

     real, dimension (:,:), allocatable :: a 
     integer :: dim1, dim2 
     integer :: i, j 

     print*, "Give dimensions dim1 and dim2: " 
     read*, dim1, dim2 

     ! now that the size of a is know, allocate memory for it 
     allocate ( a(dim1,dim2) ) 

     do  i = 1, dim2 
          do j = 1, dim1 
               a(j,i) = i*j 
               print*, "a(",j,",",i,") = ", a(j,i) 
          end do 
     end do 

     deallocate (a) 
 end program dynamic_array 

When the array is no longer needed, it should be deallocated.  This frees up the storage 
space used for the array for other use.   
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Assumed shape arrays 

Arrays can be passed as arguments to procedures, as the following example illustrates: 

 program dummy_array 

     implicit  none 

     integer, dimension (10) :: a 

     call fill_array (a) 
     print, a 

 end program dummy_array 

 subroutine fill_array (a) 

     implicit none 

     ! dummy arguments 
     integer, dimension (10), intent (out) :: a 

     ! local variables 
     integer :: i 

     do i = 1, 10 
         a(i) = i 
     end do 

 end subroutine fill_array 

However, written like this, the subroutine fill_array can only be called with arrays of 
dimension 10.  It would clearly be advantageous if routines can be used for arrays of any 
size.  To accomplish this, several techniques can be used to “hide” the array size from the 
procedure.  In Fortran 90, the most flexible way of doing this is by using the assumed 
shape technique.  In the procedure, the shape of the array is not specified, but is taken 
automatically to be that of the corresponding actual argument.  The size of the array (the 
number of elements it contains, size_a in the example below), is determined in the 
subroutine using the intrinsic function size.  size (array, dim) returns the number of 
elements along a specified dimension dim.  The argument dim is optional.  If it not 
specified, size sums the number of elements in each dimension.   

 40



Fortran 90/95 Programming Manual  

The above program can be rewritten as follows: 

program dummy_array 

     implicit none 

     integer, dimension (10) :: a 

     interface 

         subroutine fill_array (a) 
             integer, dimension ( : ) intent (out) :: a 
             integer :: i 
         end subroutine fill_array 

     end interface 

     call fill_array (a) 
     print, a 

 end program dummy_array 

 subroutine fill_array (a) 

     implicit none 

     ! dummy arguments 
     integer, dimension ( : ), intent (out) :: a 

     ! local variables 
     integer :: i, size_a 

     size_a = size (a) 

     do i = 1, size_a 
         a(i) = i 
     end do 

 end subroutine fill_array 

Note that, in this case, the explicit interface is required.  The procedure fill_array can now 
be called with arrays of any size.   
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Multidimensional arrays can also be passed to procedures in this way: 

 program example_assumed_shape 

     implicit none 

     real, dimension (2, 3) :: a 
     integer :: i, j 

     interface 

         subroutine print_array (a) 
             real, dimension ( : , : ), intent (in) :: a 
         end subroutine print_array 

     end interface 

     do i = 1, 2 
         do j = 1, 3 
             a(i, j) = i * j 
         end do 
     end do 

     call print_array (a) 

 end program example_assumed_size 

 subroutine print_array 

     implicit none 

     ! dummy arguments 
     real,dimension ( : , : ), intent (in) :: a 

     print*, a 

 end subroutine print_array 

Note that the rank (i.e., the number of dimensions) must be explicitly defined in the 
procedure, but the shape (the extent of each dimension) is taken from the actual argument.  
If required, in the subroutine print_array the size of the array can be found out by the 
function size.  In this case, size (a) would yield 6, size (a, 1) would yield 2, and size (a, 
2) would yield 3.   

Summary 

This chapter showed some more advanced array manipulations, such as implied do loops 
and array expressions.  A very useful concept is that of dynamic (allocatable) arrays, 
which did not exist in FORTRAN 77.  We have seen how the shape of an array can be 
passed implicitly to a procedure by using assumed shape arrays.   
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Exercises 

13. Given the array declaration:  
real, dimension (24, 10) :: a 

Write array sections representing:  
a) the second column of a 
b) the last row of a 
c) the block in the upper left corner of size 2 x 2.   

14. Rewrite exercise 3.8 using array syntax instead of do loops.   

6. Modules 
Modules 

A module serves as a packaging means for subprograms, data and interface blocks.  
Modules are a new and powerful feature of Fortran 90.  They make common blocks 
(routinely used in FORTRAN 77) and include statements obsolete.   

A module consists of two parts: a specification part for the declaration statements 
(including interface blocks and type and parameter declarations), and a subprogram part. 

The general form of a module is: 

 module module_name 

     ! specification statements 

 contains 

     ! procedures 

 end module module_name 

Modules can contain just the specification part or the subprogram part, or both.   

The following example contains both: 

 module constants 

 implicit none 

 real, parameter :: pi = 3.1415926536 
 real, parameter ::  e = 2.7182818285 

contains 

     subroutine show_consts() 

         print*, “pi = “, pi 
         print*,  e = “. e 

    end subroutine show_consts 

end module constants 
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Note the implicit none.  Just like with procedures, it is good programming practice to use 
implicit none in modules.  It only needs to be specified once i.e., it is not necessary to 
specify implicit none again in the module’s procedures.   

Modules are accessed by the use statement: 

 program module_example 

     use constants 
     implicit none 

     real :: twopi 

     twopi = 2 * pi 
     call show_consts() 
     print*, “twopi = “, twopi 

 end program module_example 

The use statement makes available to the main program all the code (specification 
statements and subprograms) in the module constants.  It supplies an explicit interface of 
all the module’s procedures.  The use statement has to be the first statement in the 
program (it comes even before implicit none), only comments are allowed before use.   

When a subroutine is defined in a module, then there is no need to provide an explicit 
interface in the calling program (as long as the module’s contents are made available to 
the program via the use statement).   

Accessibility 

By default, everything in a module is publicly available, that is, the use statement in the 
main program makes available all of the code in the module.  However, accessibility can 
be controlled by the private and public attributes.  Everything that is declared private is 
not available outside the module.   
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Example: 

 module convertT 

     implicit none 

     real, parameter, private :: factor = 0.555555556 
     integer, parameter, private :: offset = 32 

     contains 

         function CtoF (TinC) result (TinF) 

             ! funtion result 
             real :: TinF 

             ! dummy argument 
            real, intent (in) :: TinC 

             TinF = (TinC/factor) + offset 

         end function CtoF 

         function FtoC (TinF) result (TinC) 

             !function result 
             real :: TinC 

             ! dummy argument 
             real :: TinF 

            TinC = (TinF-offset) * factor 

         end function FtoC 

 end module convertT 

The following program uses the module convertT: 

 program convert_temperature 

     use convertT 
     implicit none 

     print*, “20 Celcius = “, CtoF (20.0), “ Fahrenheit” 
     print*, “100 Fahrenheit = “, FtoC (100.0), “ Celcius” 

 end program convert_temperature 

The module defines two constants, factor and offset, which are not available to the 
program convert_temperature.  The functions CtoF and FtoC, however, are available to 
the program.  Thus, the statement: 

 print*, offset 

would induce an error message from the compiler.  (For example, my Intel Fortran 
Compiler would give the error message: “In program unit CONVERT_TEMPERATURE 
variable OFFSET has not been given a type”).   
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For data objects, like factor and offset in the example above, the public and private 
attributes occur in the type declaration statement: 

 real, private :: factor 
 integer, private :: offset 

For procedures, they must be defined in public and private statements: 

 public :: CtoF, FtoC 

The default accessibility of the module can be set by the public or private statements.  If 
private is specified, then all module contents are private, except those that are explicitly 
defined as public: 

 module convertT 
private 
public :: CtoF, FtoC 

Selecting module elements 

Generally, the use statement makes available all (public) elements of a module.  
However, when only a subset of the module is needed, the accessibility can be restricted 
with only.   

The example of the previous section could have be written in the following way: 

module convertT 

    public 
    … 

end module convertT 

 program convert_temperature 

     use convertT, only: CtoF, FtoC 
     … 

 end program convert_temperature 

The only option safeguards the module elements that are not needed by making them 
inaccessible to the program.  It can also make programs more transparent, by showing the 
origin of data objects or procedures, particularly if the program uses several modules: 

 program only_example 

     use module1, only: sphere, triangle 
     use module2, only: compute_gradient 
     use module3, only: element1, element2, element3 

     … 

 end program only_example 

It is now obvious that the procedure compute_gradient is defined in module2. 
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Data encapsulation 

Modules allow data and operations to be hidden from the rest of the program.  Data 
encapsulation refers to the process of hiding data within an “object”, and allowing access 
to this data only through special procedures, called member functions or methods.  Data 
encapsulation is one of the concepts of object-oriented programming (see Chapter 11).  
Data encapsulation functions as a security tool, because the data in the object is only 
available through the methods, which decreases the possibility of corrupting the data, and 
it reduces complexity (because the data is hidden within the module).   

Consider the following example: 

 module student_class 

 implicit none 

     private 
     public :: create_student, get_mark 

    type student_data 
         character (len=50) :: name 
         real :: mark 
     end type student_data 

    type (student_data), dimension (100) :: student 

 contains 

     subroutine create_student (student_n, name, mark) 

         ! here some code to set the name and mark of a student 

     end subroutine create_student 

     subroutine get_mark (name, mark) 

         ! dummy arguments 
         character (len=*), intent (in) :: name 
         real, intent (out) :: mark 

         ! local variables 
         integer :: i 

         do i = 1,100 

              if (student(i)%name == name) then 
                  mark = student(i)%mark 
              end if 

         end do 

     end subroutine get_mark 

 end module students 

The student_class module defines a data type (student_data) to hold information of a 
student (name and a mark).  Only the subroutines, create_student and get_mark, are 
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accessible from outside the module, all other module contents are private.  Thus, one 
cannot obtain the mark of a student by writing: 

 mark1 = student(1)%mark 

because the array student is private.   

One has to use the public subroutine get_mark for this, as illustrated in the following 
program:  

program student_list 

     use student_class 
     implicit none 

     real :: mark 

     call create_student (1, “Peter Peterson”, 8.5) 
     call create_student (2,”John Johnson”, 6.3) 

     call get_mark (“Peter Peterson”, mark) 
     print*, “Peter Peterson:”, mark 

end program student_list 

Global data management – no more common blocks! 

Procedures can communicate with each other via their argument lists.  However, a 
program may consist of many procedures that require access to the same data.  It would 
be convenient if this data were globally accessible to the whole program.  In FORTRAN 
77, this was accomplished by common blocks.  However, modules can replace all uses 
of common blocks.  Global data can be packed in a module, and all procedures requiring 
this data can simply use the module.  Modules are much safer and cleaner than common 
blocks.  Common blocks have no mechanisms to check errors, variables can be renamed 
implicitly, and there are no access restrictions.  So, don’t use common blocks, use 
modules instead! 

Summary 

This chapter introduced a new and powerful feature in Fortran 90, modules.  Modules are 
a means of packaging data and procedures.  They make the old-fashioned common 
blocks obsolete.  Modules provide a method to partition code into easily maintained 
packages, and allow some degree of object-oriented programming (we have seen an 
example of data hiding and encapsulation).   
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Exercises 

Exercise 16, the Towers of Hanoi, is optional.   

15. Finish the program student_list by adding to the student_class module the procedures 
create_student and delete_student.   

16. The Towers of Hanoi.   
 There are three poles.  One of them contains discs having different widths stacked in 

ascending order; the other two poles are empty: 
 
 
 
 
 
 
 
 
 

The goal is to move all the discs from the centre pole and stack them on one of the 
other poles in ascending order.  You can only move the top disc of a stack, and you 
can only move one disc at a time.  It is not allowed to stack a disc on top of one that 
is smaller.   

You will have to figure out a way to represent the discs and their location, and an 
algorithm to move the discs.  By printing the occupation of the towers after each 
move, you can check if your program works correctly.   

Hint: The easiest algorithm uses a recursive function.  By making the towers (their 
representation) global (by using modules), printing becomes a lot easier!   

7. More on I/O 
List-directed input/output 

In Chapter 2 we have seen that we can transfer data from the keyboard into the program 
using read*, and write characters to the screen via print*.  This simple form of I/O is 
called list-directed input/output.  The * in read* and print* means “free format”, that is, 
the format is defined by the computer system, and is not under the control of the 
programmer.  More control is given to the programmer via formatted I/O.   

Formatted input/output 

There are two forms of formatted input.  The simplest one has the form: 

 read fmt, variable_list 

Similarly, the simpler of the two forms of formatted output statements has the form: 

 print fmt, variable_list 
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Here, fmt denotes a format specification, and variable-list is a list of variables.  This form 
of read and write reads from the keyboard and writes to the screen, respectively.  The 
read* and print* we have used so far are a special case of this form.   

Format specifications 

A format specification defines in which format data is displayed.  A format specification 
consists of a string, containing a list of edit descriptors in parentheses.  An edit descriptor 
specifies the exact format (width, digits after decimal point) in which characters and 
numbers are displayed.   

An example of format specification: 

 “(a10, i5, f5.3)” 

 The a descriptor is for character variables.  In aw, the number w specifies the field 
width.  Thus, a10 means that 10 places will be used to display the character 
variable.  If a field larger than the character variable is specified, the variable will 
be right-justified (i.e., blanks will appear before the character variable).  If no 
field width is specified, the width of the field is determined from the actual width 
of the character variable.   

 The i descriptor is for integers.  The number after the i is again the field width.  
Another form of the i descriptor is iw.m, where w defines the field width, and m 
specifies the minimum number of digits to be displayed, if necessary preceded by 
zeros.   

 The f descriptor is for reals.  In fw.d, w specifies the field width, and d specifies 
the number of digits after the decimal point.  Thus, f5.3 will display the number 
1.30065 as 1.301.  Note that this number takes up 5 places: 1 digit before the 
decimal point, 3 digits after the decimal point, and the decimal point itself.   

 Reals can also be displayed using the es descriptor, which displayed the real in 
scientific notation.  The form is the same as for the f descriptor: esw.d.  Thus, 
es10.3 would display the real 6.7345 as  6.734E+00 (with a leading blank, 
because of the field width 10).   

As mentioned above, format specifiers are used in formatted I/O (in the following 
examples, b denotes a blank character): 

pi = 3.1415927 
print “(a, i3.3)”, “Result = “, 1 ! gives: Result = 001 
print ”(f6.3)”, pi ! gives: b3.142 
print “(e16.4)”, pi/100 ! gives: bbbbbb3.1416E-02 

Repeat counts can be specified if more than 1 item is to be displayed with exactly the 
same format: 

 print “(3(f6.3)”) x, y, z 
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More formatted I/O 

As mentioned above, there are two different forms of the formatted input and output 
statements.  The first form is the one we have just seen above: 

 read fmt, variable_list 
 print fmt, variable_list 

The other form requires a unit number: 

 read (unit=u, fmt=fmt) variable_list 
 write (unit=u, fmt=fmt) variable_list 

fmt is again a format specification, and u is a unit number, a number associated with a file 
(see next section).   

(In Fortran 90, the “unit=” and “fmt=” in the read and write statements above are in 
principle not required – if they are omitted, the unit number has to be the first argument, 
and the format specification the second argument-, but they enhance readability.  In F, the 
“unit=” and “fmt=” are required.)   

Several optional specifiers can be specified as well, one of them is iostat, which can be 
used to recover from errors while reading or writing (it is very useful for checking errors 
while reading a file): 

read (unit=u, fmt=fmt, iostat=ios) variable_list 
 write (unit=u, fmt=fmt, iostat=ios) variable_list 

Here, ios must be an integer variable.  If no errors occurred during reading or writing, the 
integer variable is set to 0, a positive integer means an error occurred, and a negative 
integer means an end-of-file condition occurred.   

File handling 

Most programs need to receive information, and need to output data.  So far, we used the 
keyboard and screen to input and output information.  However, other devices, such as a 
disk, tape, or cartridge, can be used as well.  A collection of data on any of these devices 
is a file.  To make a file available to the program (so that the progam can read data from, 
or write data to the file), it must be assigned a unit number.  The open statement is used 
for this.   

The open statement has the following form: 

 open (unit=u, file=filename, status=st, action=act) 

 The unit number u is a positive integer (or integer expression).  This specifier is 
required.   

 The status st is a character expression.  It can be “new” (the file should not yet exist, 
but will be created by the open statement), “old” (the file exists), “replace” (if the file 
doesn’t exist, it is created, if the file already exists, it is deleted and a new file with the 
same name is created), or “scratch” (a file that is just used during execution of the 
program, and does not exist anymore afterwards).   
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 The filename is a character expression giving the name of the file.  The file specifier is 
required if the status is “old”, “new”, or “replace”, and it must not appear if the status 
is “scratch”.   

 The action act is a character expression as well; it can be “read” (file cannot be written 
into), “write” (cannot read from the file) or “readwrite” (no read and write restrictions).   

These are the most common specifiers for the open statement (and are all required in F, 
but note that the filename must not be specified if the status is “scratch”).  There are 
optional specifiers as well (access, iostat, form, recl, and position).  The most useful of 
these is probably iostat, which should be set to an integer variable.  This variable is set to 
zero if the open statement is correctly executed, and is set to a positive integer if an error 
occurred.   

Unit numbers cannot be negative, and often the range 1-99 is allowed (although this is 
processor-specific).  Generally, 5 is connected with console input, and 6 with output to 
screen.  The unit number 0 is also often special.  Thus, don’t use 0, 5, and 6 for external 
files (files on disk).   

We can read from and write to a disk file, if this file is opened and assigned a unit 
number: 

 write (unit=8, fmt = “(a2, 3(f10.6) )”) atom_type, x, y, z 

When a file is not longer needed, it should be closed.  The close statement disconnects a 
file from a unit.  The syntax is: 

 close (unit=u, iostat=ios, status=st) 

The unit and iostat specifiers have the same meaning as above, status can be “keep” (the 
file will still exist after execution of this statement) or delete” (the file will be deleted).  
Only the unit specifier is required.  If the status is not specified it is “keep”, except for 
scratch files, for which it is “delete”.   

An example: 

 program file_example 

     implicit none 

     integer :: ierror 

     open (unit=13, file=”test.dat”, status=”new”, action=”write”, iostat=ierror) 

     if (ierror /= 0) then 
         print*, “Failed to open test.dat” 
         stop 
     end if 

     write (unit=13, fmt=*) “Hello world!” 

     close (unit=13) 

 end programfile_example 
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This program creates a file called test.dat, opens it for writing, and writes a message into 
the file.  After execution of the program the file will still exist.  If the open failed, then 
execution of the program is stopped.  It is good programming practice to test if the open 
statement was successful.  If it had failed, the program would have crashed when it tried 
to write into it.   

Internal files 

A unit that is associated with an external device (like for example keyboard, screen, disk, 
or cartridge) is an external file.  There are also internal files, and read and write can also 
read from and write into these.  An internal file is a character variable.  Contrary to 
external files, an internal file is not connected with a unit number.   

Example: 

 character (len=8) :: word 
 character (len=2) :: ww 
 integer :: ierror 

 write (unit=word, fmt=”(a)”, iostat=ierror) “aabbccdd” 
   ! the character variable “word” now contains the letters aabbccdd 

 read (unit=word, fmt=”(a2)”, iostat=ierror) ww 
   ! the character variable “ww” now contains the letters aa 

String manipulation functions 

The following intrinsic functions to manipulate strings can be very useful: 

trim 
trim (string): returns the string with trailing blanks removed (the length of the string will 
be reduced)   

adjustl 
adjustl (string): removes leading blanks, and appends them to the end (so the length of 
the string remains constant).   

adjustr 
adjustr (string): removes trailing blanks, and inserts them at the front of the string.   

index  
index (string, substring): returns the starting position of a substring in a string, or zero 
if the substring does not occur in the string.   

len 
len (string) returns an integer with the value of the length of the string.   

len_trim 
len_trim (string): returns an integer with the value of the length of the string without 
trailing blanks.   
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Examples: 

In the following examples, b denotes a blank character.   

trim (“bbStringbb”) gives “bbString” 
adjustl (“bbTanja”) gives “Tanjabb” 
adjustr (“Wordbbbbb”) gives “bbbbbWord” 
index (“Tanja van Mourik”, “van”) yields 7.   
len_trim (Tanjabbbb) yields 5.   

In the following example the program reads a file and uses the intrinsic index to search 
for the occurrence of the word “energy”: 

!! Example for reading an output file 

program readout 

    implicit none 

    integer, parameter :: linelength = 120 
    character (len=linelength) :: line 
    integer :: ierror 

    open (unit=10, file="test.dat", action ="read", status="old", iostat=ierror) 
    if ( ierror /= 0 ) then 
         print*, "Failed to open test.dat!" 
         stop 
    end if 

    readfile : do 

        read (unit=10, fmt="(a)", iostat=ierror) line 

        if (ierror < 0 ) then 
            print*, "end of file reached" 
            exit readfile 

        else if (ierror > 0) then 
            print*, "Error during read" 
            exit readfile 

        else 
            ! line has been read successfully 
            ! check if it contains energy 
                if (index (line, "energy") > 0) then 
                    print*, "energy found!" 
                    exit readfile 
                end if 
         end if 

    end do readfile 

    close (unit=12) 

end program readout 
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The program reads the file “test.dat” line by line in the “endless” do loop readfile.  Each 
time a line is read in, the program checks if the end of the file has occurred, or if an error 
accurred during reading.  If either of these happened, then the do loop is exited.   

Summary 

In this chapter we learned formatted input/output and how to deal with files.   

Exercises 

17. Write a program with a function to eliminate blank characters from a string.   

18. Gaussian is a well-known quantum chemical program package. The output of a 
calculation, for example a geometry optimisation using the MP2 (2nd-order Møller-
Plesset) method, contains a lot of data.  Most of it is not very useful, and you may just 
be interested in the final optimised energy.   

Write a program that reads a Gaussian output file of an MP2 geometry optimisation, 
checks if the optimisation finished, and prints the optimised energy to another file.  If 
you have access to Gaussian, create an output of a geometry optimisation (for example, 
H2O using MP2 and the 6-31G* basis set), otherwise create a file that has the 
characteristics specified below, and test your program.  

After each geometry optimisation cycle, the energy is printed in a line like: 

E2 =    -0.1199465917D+01 EUMP2 =    -0.48968224768908D+03 

(The actual numbers of course depend on molecule, basis set, optimisation cycle).  
The MP2 energy is the one labelled EUMP2.   

When the geometry optimisation is finished, the program prints “Optimization 
completed”.  This happens after the last (optimised) energy is listed.   

(Alternatively, do the above using the output of your favourite computational 
chemistry program.  If you do this, then provide an example of such an output with the 
solution to this exercise.)   

8 Pointers 
Pointers 

The value of a particular data object, for example a real or an array, is stored somewhere 
in the computer’s memory.  Computer memory is divided into numbered memory 
locations.  Each variable is located at a unique memory location, known as its address.  
Some objects require more storage space than others, so the address points to the starting 
location of the object.  There is a clear distinction between the object’s value and its 
location in memory.  An object like an array may need a lot of memory storage space, but 
its address only requires a very small amount of memory.   

In certain languages, like C and C++, a pointer simply holds the memory address of an 
object.  A pointer in Fortran (which is a data object with the pointer attribute) is a bit 
more complicated.  It contains more information about a particular object, such as its type, 
rank, extents, and memory address.   
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A pointer variable is declared with the pointer attribute.  A pointer variable that is an 
array must be a deferred-shape array.  In a deferred-shape array, only the rank (the 
number of dimensions) is specified.  The bounds are specified by just a colon.  The extent 
of the array in each dimension (i.e., number of elements along a dimension) is determined 
when the pointer is allocated or assigned – see below.   

 integer, pointer :: p ! pointer to integer 
 real, pointer, dimension (:) :: rp ! pointer to 1-dim real array 
 real, pointer, dimension (:,:) :: rp2 ! pointer to 2-dim real array 

In contrast to a normal data object, a pointer has initially no space set aside for its 
contents.  It can only be used after space has been associated with it.  A target is the space 
that becomes associated with the pointer.   

A pointer can point to: 
• an area of dynamically allocated memory, as illustrated in the next section.   
• a data object of the same type as the pointer, with the target attribute (see section 

on targets below) 

Allocating space for a pointer 

Space for a pointer object can be created by the allocate statement.  This is the same 
statement we used before to allocate space for dynamic arrays (see Chapter 5).   

program pointer1 

     implicit none 
     integer, pointer :: p1 

     allocate (p1) 
     p1 = 1 

 end program pointer1 

The statement 

 integer, pointer :: p1 

declares the pointer p1, but at this point it is not associated with a target.  The allocate 
statement reserves space in memory.  This space is the target that the pointer is now 
associated with.   

After the statement 

p1 = 1 

the value of the target is 1.   

The allocated storage space can be deallocated by the deallocate statement.  It is a good 
idea to deallocate storage space that is not any more needed, to avoid accumulation of 
unused and unusable memory space.   

Targets 

A target object is an ordinary variable, with space set aside for it.  However, to act as a 
target for a pointer is must be declared with the target attribute.  This is to allow code 
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optimisation by the compiler.  It is useful for the compiler to know that a variable that is 
not a pointer or a target cannot be associated to a pointer.  Only an object with the target 
attribute can become the target of a pointer.   

The program in the previous section can be rewritten as follows: 

program pointer2 

     implicit none 
     integer, pointer :: p1 
     integer, target :: t1 

     p1 => t1 
     p1 = 1 

 end program pointer2 

After the statement 

     p1 => t1 

p1 acts as an alias of t1.  Changing p1 has the effect of changing t1 as well.   

Association 

The association status of a pointer can be undefined, associated and disassociated.  If the 
associaton status is not undefined, it can be tested by the function associated.  The 
function has 2 forms: 

associated (ptr) returns the value true if the pointer ptr is associated with a target, and 
false otherwise.   

associated (ptr, trgt) returns true of the pointer ptr is associated with the target trgt, and 
false otherwise.   

So in the program in the previous section before the statement 

     p1 => t1 

the association status is undefined, but after it both 

associated (p1) and associated (p1, t1) would return true.   

A pointer can be explicitly disassociated from a target by the nullify statement: 

 nullify (ptr) 

It is a good idea to nullify pointers instead of leaving their status undefined, because they 
can then be tested with the associated function.   

Nullify does not deallocate the targets (because there can be more than one pointer 
pointing to the same target).  Deallocate implies nullification as well.   

Linked lists 

A linked list is a special kind of data storage structure.  It consists of objects of derived 
type that are linked together by pointers.  There are several kinds of linked lists (single-
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linked lists, double-linked lists, binary trees).  Here we will discuss the simplest, and 
most common of those, the single-linked list (usually referred to simply as a linked list).   

Each element (also called node or link) of a linked list is an object of derived type that 
consists of a part with data and a pointer to the next object of the same list: 

 

 

                  

The pointer is of the same type as the other elements of the list.  The derived type can for 
example be something like: 

 type node 
     integer :: i 
     real :: value 
     type (node), pointer :: next 
 end type node 

Linked lists are not unlike arrays, but there are differences.  Linked lists can be allocated 
dynamically, so you don’t need to know before the program is executed how many 
elements are needed (this also saves memory space).  The size of the list can change 
during execution (links can be added and removed), and links can be added at any 
position in the list.  The links are not necessarily stored contiguously in memory.   

The “next” pointer of the last link in the list should be nullified.  You also need a pointer 
(often referred to as head pointer) that refers to the first item in the list.   

data

null

data

next

data 

next 
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Consider the following example: 

program linkedlist 

    implicit none 

    type :: link 
        integer :: i 
        type (link), pointer :: next 
    end type link 

    type (link), pointer :: first, current 
    integer :: number 

    nullify (first) 
    nullify (current) 

    ! read in a number, until 0 is entered 
    do 

        read*, number 

        if (number == 0) then 
            exit 
        end if 

        allocate (current) ! create new link 
        current%i = number 
        current%next => first ! point to previous link 
        first => current ! update head pointer 

    end do 

    ! print the contents of the list 
    current => first ! point to beginning of the list 

    do 

        if (.not. associated (current)) then ! end of list reached 
            exit 
        end if 

        print*, current%i 
        current => current%next ! go the next link in the list 

    end do 

end program linkedlist 

In this program a link is defined that can hold an integer.  The pointer “first” is the head 
pointer.  In the first do loop, numbers are read in until a 0 is entered.  After each number 
is read in, a new link is created and added before the previous link.   
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Thus, if the numbers 1, 2, and 3 are entered (in this order) the list will look like: 

 

 

                     

The contents of the list are printed in the second do loop.  We start at the beginning of the 
list (current => first), and go from one link to the next (current => current%next), until 
the end of the list is reached (indicated by a not associated next pointer).   

Exercises 

1

null

2

next

3 

next 

19. Create a linked list.  Each link contains a real number, which is read from screen in a 
do loop.  After a number is read in, a new link must be created and added to the list in 
such a way that the list is sorted (i.e., with increasing (or decreasing) values for the 
numbers).  Preferably, adding the new link is done in a subroutine.  Make also a 
subroutine to print the list, so you can check your program.  To add the new link at 
the appropriate position in the list, you need to distinguish between the following 
cases:  
• First link.  (Can be found out by the association status of the head pointer).  If it’s 

the first link, create the new link and make the head pointer point to the new link.  
(Don’t forget to nullify the next pointer.)   

• Adding to the beginning.  If the new number is smaller than the number in the 
first link, the new link needs to be the first one.   

• Second link that should not be before the first one.  If you are adding the second 
link can be found out by testing the association status of the next pointer of the 
first link.  The next pointer of the first link should point to the new link.   

• Adding to the middle.  To find out where the new link has to be added to the list, 
you have to go through the list (in a similar way as in the second do loop in the 
example above), and compare the new number with the ones in the existing links.  
You need to keep track of three links: the new link, the current link (which is the 
one that goes through the list as in the example above), and the previous link.  
You should test if the new link should be added before the current one, and if so, 
the previous link has to point to the new one (that’s why you need the previous 
link as well), and the new link has to point to the current link.   

• Before or after the last link.  If the end of the list is reached, then you know that 
the new link should be added either directly before, or after the last link.   
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9 Numeric Precision 
Fortran 90 allows the programmer to specify the required precision of real variables.  If 
we declare the real variable x: 

 real :: x 

then the x is represented with the default precision for the processor used.  This precision 
can vary from computer to computer, depending on, among other things, the word length 
of the processor.  Thus, a real will be more accurately represented on a 64-bit than on a 
32-bit processor.  In FORTRAN 77, the precision of real variables could be increased by 
using double precision for reals, which use two words instead of one to represent the 
numbers.  In Fortran 90, the types integer, real, complex and logical have a “default kind” 
and a number of other kinds.  How many other kinds there are for a certain type depends 
on the particular processor.  Each kind has its own kind type parameter, which is a 
integer of positive value.  For example, if, for a certain processor, a kind value of 8 yields 
a precision equivalent to the old double precision type of FORTRAN 77, then the 
following statement 

 real (kind = 8) :: x1 

is equivalent to the FORTRAN 77 statement 

 double precision x1 

However, this is not very portable, because the required kind value may be different on 
another computer.  Although many computers use kind values that indicate the number of 
bytes used for storage of the variable, you cannot rely on this.   

Fortran 90 has two intrinsic functions to obtain the kind value for the required precision 
of integers and reals: selected_int_kind and selected_real_kind, respectively.   

The selected_real_kind function returns an integer that is the kind type parameter value 
necessary for a given decimal precision p and decimal exponent range r.  The decimal 
precision is the number of significant digits, and the decimal exponent range specifies the 
smallest and largest representable number.  The range is thus from 10-r to 10+r.   

As an example: 

 ikind = selected_real_kind (p = 7, r = 99) 

The integer ikind now contains the kind value needed for a precision of 7 decimal places, 
and a range of at least 10-99 to 10+99.   

 61



Fortran 90/95 Programming Manual  

The function selected_real_kind can be used in a number of different forms: 

! if both precision and range are specified, the “p =” and “r =” are not needed 
! the following two statements are therefore identical 
 ikind = selected_real_kind (p = 7, r = 99) 
 ikind = selected_real_kind (7, 99) 

! If only the range is specified, the “r = “ is needed 
 ikind = selected_real_kind (r = 99) 

! if only one argument is used, it is the precision 
! the following two statements are therefore identical 
 ikind = selected_real_kind (p = 7) 
 ikind = selected_real_kind (7) 

If you want to use the ikind value in a type declaration statement, it has to be a constant 
(i.e., declared with the parameter attribute).  The real variable x declared in the 
following statement is precise to 7 decimal places, and has a range of at least 10-99 to 
10+99.   

 integer, parameter :: ikind = selected_real_kind (7, 99) 
 real (kind = ikind) :: x 

If the kind value for the required precision or range is not available, a negative integer is 
returned.   

The selected_int_kind function returns the lowest kind value needed for integers with 
the specified range: 

 integer, parameter :: ikind = selected_int_kind (10) 
 integer (kind = ikind) :: big_number 

The integer big_number can now represent numbers from 10-10 to 10+10.  As for 
selected_real_kind, if the kind value for the required range is not available, a negative 
integer is returned.   

Exercises 

20. Write a program that declares a real with a precision of at least 7 decimal places and 
an integer that can represent the number 1000000000000.   

10 Scope and Lifetime of Variables 
Local variables in subroutines 

The scope of an entity is that part of the program in which it is valid.  The scope can be as 
large as the whole program, or as small as (part of) a single statement.  Variables defined 
in subroutines are valid only in their subroutine i.e., their scope is the subroutine.  These 
variables are called local variables, and cannot be used outside the subroutine.  The 
lifetime of a variable defined in a subroutine is as long as this subroutine, or any routine 
called by it, is running.   
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In the following example the variable int1 in the main program is not the same as int1 in 
the subroutine sub1 (they occupy different memory locations), and thus, the print 
statement in the main program would print 0 (and not 1).   

 program scope 

    implicit none 
    integer :: int1 

      int1 = 0 
      call sub1 

       print*, int1 

 end program scope 

 subroutine sub1 

    implicit none 
    integer :: int1 

       int1 = 1 
      print*, int1 

 end subroutine sub1 

The variable int1 in the subroutine sub1 goes out of scope at the end of the subroutine 
i.e., it then does not exist anymore.  Consider the following example: 

 program scope 

    implicit none 

      call sub1 (.true.) 
      call sub1 (.false.) 

 end program scope 

 subroutine sub1 (first) 

    implicit none 
    logical, intent (in) :: first 
    integer :: int1 

    if (first) then 
       int1 = 0 
    else 
       int1 = int1 + 1 
    end if 

   print*, int1 

 end subroutine sub1 

The first time sub1 is called (with first = .true.), the variable int1 is set to 0.  At the end 
of sub1, int1, being a local variable, goes out of scope and may be destroyed.  Thus, one 
cannot rely on int1 containing the number 0 the second time sub1 is called.  So the 
above program is actually wrong, although it may work with some compilers.  If the 

 63



Fortran 90/95 Programming Manual  

variable in a subroutine needs to be kept between successive calls to the subroutine, it 
should be given the attribute save: 

 subroutine sub1 (first) 

    implicit none 
    logical, intent (in) :: first 
    integer, save :: int1 

       [ … ] 

 end program sub1 

Note that initialisation of a variable in the declaration or in a data statement implicitly 
gives it the save status.  However, it is clearer to explicitly include the save attribute also 
in these cases: 

 integer, save :: int1 = 0 

One should not give a variable the save attribute if it does not need it, as it may impede 
optimisation by the compiler and it also makes e.g., parallelisation more difficult.   

Variables in modules 

The lifetime of a variable declared in a module is as long as any routine using this 
module is running.  Consider the following example: 

 module mod1 

     implicit none 
     integer :: int1 

 end module mod1 

 subroutine sub1 (first) 

    use mod1 
    implicit none 

    logical, intent (in) :: first 

    if (first) then 
       int1 = 0 
    else 
       int1 = int1 + 1 
    end if 

 end subroutine sub1 

 program prog1 

     implicit none 

     call sub1 (.true.) 
     call sub1 (.false.) 

 end subroutine prog1 
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The integer int1 does not need to be declared in sub1, because it is already declared in 
the module mod1 (and sub1 uses the module).  However, at the end of the subroutine, 
int1 goes out of scope (because there is not a subprogram anymore that uses the module 
mod1), and one cannot rely on int1 containing the number 0 the second time sub1 is 
called.  So the above program is actually wrong (although it may work with some 
compilers).  To make the above program standard conforming, one would have to either 
use the module in the main program (in addition to using it in the subroutine), or declare 
int1 with the save attribute.   

11 Debugging 
Debuggers 

You have probably been using write or print statements to figure out why a program 
gives wrong results.  The larger the program gets, the more cumbersome it is to search for 
errors like this.  Debuggers are a much more powerful tool for stepping through the code 
and examining values.   

A debugger lets you see each instruction in your program and lets you examine the values 
of variables and other data objects during execution of the program.  The debugger loads 
the source code, and you run your program from within the debugger.   

Most operating systems come with one compiler or the other.  Graphical programming 
environments like Visual Fortran come with an integrated debugger.  Full screen 
debuggers generally show the source code in a separate window.   

Most debuggers have the following capabilities: 

 Setting breakpoints.  A breakpoint tells the debugger at which line the program 
should stop.  Breakpoints allow analysis of the status of variables just before and 
after a critical line of code.  Execution can be resumed after the variables have 
been examined.   

 Stepping through a part of the source code line by line.   

 Setting watch points.  The debugger can show the value of a variable while the 
program is running, or break when a particular variable is read or written to.   

To produce the information needed for the debugger the program should be compiled 
with the appropriate compiler flag (generally –g).   

gdb 

The GNU debugger, generally comes with Linux.  Xxgdb is a graphical user interface to 
gdb for X window systems.   

Some useful commands in gdb and xxgdb: 

break: set a breakpoint.  
run: begin execution of the program.   
cont: continue execution 
next: execute the next source line only, without stepping into any function call.   
step: execute the next source line, stepping into a function if there is a function call.   
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Look at the man pages for more information on gdb.   

dbx 

The run, cont, next and step commands are the same as in gdb.  Breakpoints can be set 
with stop: 
stop [var] stops execution when the value of variable var changes 
stop in [proc] stops execution when the procedure proc is entered.   
Stop at [line] sets a breakpoint at the specified line.   

Look at the man pages for more information on dbx.   

Exercises 

21. Find an appropriate debugger on your computer.  Recompile one of your programs 
with the debugger option specified.  Use the debugger to step through the program.  
Set a few breakpoints and examine the value of variables during execution of the 
program.   

Object-Oriented Programming 
To discuss the object-oriented (OO) paradigm is beyond the scope of this manual, 
particular because Fortran is not an OO language.  (Two of the most well-known OO 
languages are C++ and Java).  However, object-oriented thinking is gaining ground in the 
programming world, and also Fortran 90 does support (or simulate) some of the OO ideas.   

An “object” in a program is supposed to resemble a real-world object (like for example 
an animal, or a molecule).  It has characteristics that distinguish it from other objects, and 
it can “behave” like its real-world counterpart.  In Fortran 90 objects can be modelled 
with modules.  Modules can contain data to define the characteristics of the object, and 
procedures to manipulate this data.   

The four concepts of object-oriented programming are Data Encapsulation, Data 
Abstraction, Inheritance and Polymorphism.  To be an object-oriented language, a 
language must support all four object-oriented concepts.   

Fortran is in principle a “structured” programming language, but Fortran 90 does support 
some of the ideas of object-oriented thinking.  Fortran 90’s modules support data 
abstraction (grouping together of data and actions that are related to a single entity), data 
encapsulation (the process of hiding data within an “object”, and allowing access to this 
data only through special procedures or member functions), but it lacks inheritance 
(deriving subclasses from a more general data type).  Polymorphism refers to the ability 
to process objects differently depending on their data type (by redefinition of “methods” 
for derived types) and to the ability to perform the same operation on objects of different 
types.  The latter type of polymorphism can be simulated in Fortran 90 through 
overloading.   

The new upcoming Fortran 2000 standard completely supports object-oriented 
programming (including inheritance).  However, the standard is not expected to be 
released before 2004.   
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To learn more about the OO paradigm, see for example: 

“Object-Oriented Programming: A New Way of Thinking” 
Donald W. and Lori A. MacVittie 
CBM Books 1996. 
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