

Fortran 90/95

Programming Manual
fifth revision (2005)

Tanja van Mourik
Chemistry Department

University College London

Copyright: Tanja van Mourik

Fortran 90/95 Programming Manual

Fortran 90/95 Programming Manual

Brief History of Fortran

The first FORTRAN (which stands for Formula Translation) compiler was developed
in 1957 at IBM. In 1966 the American Standards Association (later the America
National Standards Institute, ANSI) released the first standard version of FORTRAN,
which later became known as FORTRAN 66. The standard aimed at providing a
standardised, portable language, which could easily be transferred from one computer
system to the other. In 1977, a revised version of FORTRAN, FORTRAN 77, was
completed (the standard was published in 1978). The next version is Fortran 90, which is
a major advance over FORTRAN 77. It contains many new features; however, it also
contains all of FORTRAN 77. Thus, a standard-conforming FORTRAN 77 program is
also a standard-conforming Fortran 90 program. Some of FORTRAN 77’s features were
identified as “obsolescent”, but they were not deleted. Obsolescent features are
candidates for deletion in the next standard, and should thus be avoided. The latest
standard is Fortran 95. Fortran 95 contains only minor changes to Fortran 90; however, a
few of the obsolescent features identified in Fortran 90 were deleted.

Because of the requirement that all of FORTRAN 77’s features must be contained in
Fortran 90, there are often several ways to do the same thing, which may lead to
confusion. For example, an integer-type variable can be declared in FORTRAN 77
format:

integer i

or in Fortran 90 format:

integer :: i

In addition, as a legacy from FORTRAN 77, Fortran 90 contains features that are
considered bad or unsafe programming practice, but they are not deleted in order to keep
the language “backward compatible”.

To remedy these problems, a small group of programmers developed the F language.
This is basically a subset of Fortran 90, designed to be highly regular and reliable to use.
It is much more compact than Fortran 90 (because it does not contain all of FORTRAN
77’s features).

There will be a new standard soon, which will be called Fortran 2003 (even though the
final international standard will not come out before late 2004). There will be new
features in Fortran 2003 (such as support for exception handling, object-oriented
programming, and improved interoperability with the C language), but the difference
between Fortran 90/95 and Fortran 2000 will not be as large as that between FORTRAN
77 and Fortran 90.

Introduction to the course

This course intends to teach Fortran 90/95, but from the point of view of the F language.
Thus, many of the old FORTRAN 77 features will not be discussed, and should not be
used in the programs.

 1

Fortran 90/95 Programming Manual

It is assumed that you have access to a computer with a Fortran 90 or Fortran 95 compiler.
It is strongly recommended to switch on the compiler flag that warns when the compiler
encounters source code that does not conform to the Fortran 90 standard, and the flag that
shows warning messages. For example:

Silicon Graphics: f90 –ansi –w2 –o executable-name sourcefile.f90

 Or even better:
 f90 –ansi –fullwarn –o executable-name sourcefile.f90

Sun: f90 –ansi

You can check these flags by typing “man f90” or “man f95” (on a Unix system). You
may ask someone in your group for help how to use the compiler and editor on the
computer you use.

If you have access to emacs or xemacs, and know how to use it (or are willing to invest a
bit of time in learning how to use it), it is recommended to use this editor. It will pay off
(emacs can format the source code for you, and thus detect program mistakes early on).

Bibliography

Fortran 95 Handbook, complete ISO/ANSI Reference
J.C. Adams, W.S. Brainerd, B.T. Smith, J.L. Wagener, The MIT Press, 1997

The F programming language
M. Metcalf and J. Reid, Oxford University Press, 1996

Programming in Fortran 90
I.M. Smith, John Wiley and Sons, 1995

Migrating to Fortran 90
J.F. Kerrigan, O’Reilly & Associates, Inc., 1993

 2

Fortran 90/95 Programming Manual

CONTENTS

Chapter 1 Getting started 4

Chapter 2 Types, Variables, Constants, Operators 4

Chapter 3 Control Constructs 15

Chapter 4 Procedures 23

Chapter 5 More on Arrays 35

Chapter 6 Modules 43

Chapter 7 More on I/O 49

Chapter 8 Pointers 55

Chapter 9 Numeric Precision 61

Chapter 10 Scope and Lifetime of Variables 62

Chapter 11 Debugging 65

 3

Fortran 90/95 Programming Manual

1. Getting started
Type, compile and run the following program (call the file hello.f90):

program hello
! this programs prints "hello world!" to the screen

 implicit none

 print*, "Hello world!"

end program hello
Note the following:

•
•
•

•

•

•

a program starts with program program_name
it ends with end program program_name
print* displays data (in this case, the character string “Hello, world!”) on the
screen.
all characters after the exclamation mark (!) (except in a character string) are
ignored by the compiler. It is good programming practice to include comments.
Comments can also start after a statement, for example:

 print*, “Hello world!” ! this line prints the message “Hello world!”
Note the indentation. Indentation is essential to keep a program readable.
Additionally, empty lines are allowed and can help to make the program readable.
Fortran 90 allows both upper and lowercase letters (unlike FORTRAN 77, in
which only uppercase was allowed).

2. Types, Variables, Constants, Operators
Names in Fortran 90

A name or “identifier” in Fortran must adhere to fixed rules. They cannot be longer than
31 characters, must be composed of alphanumeric characters (all the letters of the
alphabet, and the digits 0 to 9) and underscores (_), and the first character must be a
letter. Identifiers are case-insensitive (except in character strings like “Hello world!” in
the example above); Thus, PRINT and print are completely identical.

Types

A variable is a data object whose value can be defined and redefined (in contrast to
constants, see below). Variables and constants have a type, which can be one of the five
intrinsic types, or a derived type. Intrinsic types are part of the Fortran language. There
are five different intrinsic types. In Fortran 90, there is additionally the possibility of
defining derived types, which are defined by the user (see below). The five intrinsic
types are:

Integer Type
For integer values (like 1, 2, 3, 0, -1, -2, …).

 4

Fortran 90/95 Programming Manual

Real Type
For real numbers (such as 3.14, -100.876, 1.0 etc.). A processor must provide two
different real types: The default real type and a type of higher precision, with the name
double precision. Also this is a legacy of FORTRAN 77. Fortran 90 gives much more
control over the precision of real and integer variables (through the kind specifier), see
chapter on Numeric Precision, and there is therefore no need to use double precision.
However, you will see double precision often used in older programs. For most of the
exercises and examples in this manual the real type suffices. In the real word however,
double precision is often required.

For now, if you prefer to use double precision in your programs, use:

 real (kind=kind(1.0d0)) :: variable_name

Complex Type
For complex numbers. A complex value consists of two real numbers, the real part and
the imaginary part. Thus, the complex number (2.0, -1.0) is equal to 2.0 – 1.0i.

Logical Type
There are only two logical values: .true. and .false. (note the dots around the words true
and false).

Character Type
Data objects of the character type include characters and strings (a string is a sequence of
characters). The length of the string can be specified by len (see the examples below). If
no length is specified, it is 1.

Constants

A constant is a data object whose value cannot be changed.

A literal constant is a constant value without a name, such as 3.14 (a real constant),
“Tanja” (a character constant), 300 (an integer constant), (3.0, -3.0) (a complex
constant), .true. or .false. (logical constants. These two are the only logical constants
available).

A named constant is a constant value with a name. Named constants and variables must
be declared at the beginning of a program (or subprogram – see Chapter 4), in a so-called
type declaration statement. The type declaration statement indicates the type and name
of the variable or constant (note the two colons between the type and the name of the
variable or constant). Named constants must be declared with the parameter attribute:

 real, parameter :: pi = 3.1415927

Variables

Like named constants, variables must be declared at the beginning of a program (or
subprogram) in a type declaration statement:

 integer :: total
 real :: average1, average2 ! this declares 2 real values
 complex :: cx
 logical :: done

 5

Fortran 90/95 Programming Manual

 character(len=80) :: line ! a string consisting of 80 characters

These can be used in statements such as:

 total = 6.7
 average1 = average2
 done = .true.
 line = “this is a line”

Note that a character string is enclosed in double quotes (“).

Constants can be assigned trivially to the complex number cx:

 cx = (1.0, 2.0) ! cx = 1.0 + 2.0i

If you need to assign variables to cx, you need to use cmplx:

 cx = cmplx (1.0/2.0, -3.0) ! cx = 0.5 – 3.0i
 cx = cmplx (x, y) ! cx = x + yi

The function cmplx is one of the intrinsic functions (see below).

Arrays

A series of variables of the same type can be collected in an array. Arrays can be one-
dimensional (like vectors in mathematics), two-dimensional (comparable to matrices), up
to 7-dimensional. Arrays are declared with the dimension attribute.

Examples:

 real, dimension(5) :: vector ! 1-dim. real array containing 5 elements
 integer, dimension (3, 3) :: matrix ! 2-dim. integer array

The individual elements of arrays can be referenced by specifying their subscripts. Thus,
the first element of the array vector, vector(1), has a subscript of one. The array vector
contains the real variables vector(1), vector(2), vector(3), vector(4), and vector(5). The
array matrix contains the integer variables matrix(1,1), matrix(2,1), matrix(3,1),
matrix(1,2), ..., matrix(3,3):

 vector(1) vector(2) vector(3) vector(4) vector(5)

matrix(1,3)matrix(1,1) matrix(1,2)

matrix(2,1)

matrix(3,1)

matrix(2,2) matrix(2,3)

matrix(3,3)matrix(3,2)

 6

Fortran 90/95 Programming Manual

The array vector could also have been declared with explicit lower bounds:

 real, dimension (1:5) :: vector

All the following type declaration statements are legal:

 real, dimension (-10:8) :: a1 ! 1-dim array with 19 elements
 integer, dimension (-3:3, -20:0, 1:2, 6, 2, 5:6, 2) :: grid1 ! 7-dim array

The number of elements of the integer array grid1 is 7 x 21 x 2 x 6 x 2 x 2 x 2 = 14112.

You may not be able to use arrays with more than 7 dimensions. The standard requires
that a compiler supports up to 7-dimensional arrays. A compiler may allow more than 7
dimensions, but it does not have to.

Character strings

The elements of a character string can be referenced individually or in groups.

With:

 character (len=80) :: name
 name = “Tanja”

Then

 name(1:3) would yield the substring “Tan”

A single character must be referenced in a similar way:

 name(2:2) yields the character “a”

If the lower subscript is omitted, it is assumed to be one, and if the upper subscript is
omitted, it is supposed to be the length of the string.

Thus:

 name (:3) ! yields “Tan”
 name (3:) ! yields “nja”
 name (:) ! yields “Tanja”

Implicit typing

Fortran allows implicit typing, which means that variables do not have to be declared. If
a variable is not declared, the first letter of its name determines its type: if the name of the
variable starts with i, j, k, l, m, or n, it is considered to be an integer, in all other cases it is
considered to be a real. However, it is good programming practice to declare all
variables at the beginning of the program. The statement

 implicit none

turns off implicit typing. All programs should start with this statement. (Implicit typing
is not allowed in the F language).

 7

Fortran 90/95 Programming Manual

Derived data types

We have seen that the Fortran language contains 5 intrinsic types (integer, real, complex,
logical, and character). In addition to these, the user can define derived types, which can
consist of data objects of different type.

An example of a derived data type:

 type :: atom
 character (len=2) :: label
 real :: x, y, z
 end type atom

This type can hold a 2-character atom name, as well as the atom’s xyz coordinates.

An object of a derived data type is called a structure. A structure of type atom can be
created in a type declaration statement like:

 type(atom) :: carbon1

The components of the structure can be accessed using the component selector character
(%):

 carbon1%label = “C”
 carbon1%x = 0.0000
 carbon1%y = 1.3567
 carbon1%z = 2.5000

Note that no spaces are allowed before and after the %!

One can also make arrays of a derived type:

 type(atom), dimension (10) :: molecule

and use it like

 molecule(1)%type = “C”

Arithmetic operators

The intrinsic arithmetic operators available in Fortran 90 are:

======================
 ** exponentiation
======================
 * multiplication
 / division
======================
 + addition
 − subtraction
======================

These are grouped in order of precedence, thus, * has a higher precedence than +. The
precedence can be overridden by using parentheses. For example:

 3 * 2 + 1

 8

Fortran 90/95 Programming Manual

yields 7, but

 3 * (2+1)

yields 9.

For operators of equal strength the precedence is from left to right. For example:

 a * b / c

In this statement, first a and b are multiplied, after which the results is divided by c. The
exception to this rule is exponentiation:

 2**2**3

is evaluated as 2**8, and not as 4**3.

Numeric expressions

An expression using any of the arithmetic operators (**, *, /, +, -), like the examples in
the previous section, is called a numeric expression.

Be careful with integer divisions! The result of an integer division, i.e., a division in
which the numerator and denominator are both integers, is an integer, and may therefore
have to be truncated. The direction of the truncation is towards zero (the result is the
integer value equal or just less than the exact result):

 3/2 yields 1
 -3/2 yields –1
 3**2 yields 9
 3**(-2) equals 1/3**2, which yields 0

Sometimes this is what you want. However, if you do not want the result to be truncated,
you can use the real function. This function converts its argument to type real. Thus,
real(2) yields a result of type real, with the value 2.0.

With the examples from above:

 real(2)/3 yields 1.5
 2/real(3) yields 1.5
 -2/real(3) yields –1.5
 real(3)**-2 yields 0.1111111111 (which is 1/9)
However:

real(2/3) yields 0 (the integer division is performed first, yielding 0, which is
then converted to a real.)

Note that the function real can have 2 arguments (see the table in the section on intrinsic
functions, below). The second argument, an integer specifying the precision (kind value)
of the result, is however optional. If not specified, the conversion will be to default
precision. Kind values will be discussed later.

 9

Fortran 90/95 Programming Manual

Numeric expressions can contain operands of different type (integer, real, complex). If
this is the case, the type of the “weaker” operand will be first converted to the “stronger”
type. (The order of the types, from strong to weak, is complex, real, integer.) The result
will also be of the stronger type.

If we consider the examples above again, in

 real(2)/3

The integer 3 is first converted to a real number 3.0 before the division is performed, and
the result of the division is a real number (as we have seen).

Logical operators

The type logical can have only two different values: .true. and .false. (note the dots
around the words true and false). Logical variables can be operated upon by logical
operators. These are (listed in decreasing order of precedence):

==================
 .not.
 .and.
 .or.
 .eqv. and .neqv.
==================

The .and. is “exclusive”: the result of a .and. b is .true. only if the expressions a and b
are both true. The .or. is “inclusive”: the result of a .or. b is .false. only if the
expressions a and b are both false. Thus, if we have the logical constants:

 logical, parameter :: on = .true.
 logical, parameter :: off = .false.

Then:

 .not. on ! equals .false.
 .not. off ! equals .true.
 on .and. on ! equals .true.
 on .and. off ! equals .false.
 off .and. off ! equals .false.
 on .or. on ! equals .true.
 on .or. off ! equals .true.
 off .or. off !equals .false.
 on .eqv. on ! equals .true.
 on .eqv. off ! equals .false.
 off .eqv. off ! equals .true.
 on .neqv. on !equals .false.
 on .neqv. off ! equals .true.
 off .neqv. off ! equals .false.

Relational operators

Relational operators are operators that are placed between expressions and that compare
the results of the expressions. The relational operators in Fortran 90 are:

 10

Fortran 90/95 Programming Manual

==============================
 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to
 == equal to
 /= not equal to
==============================

Logical expressions

Expressions that use the relational operators are logical expressions. The values of
logical expressions can be either .true. or .false. Note that the range of numerical
numbers in Fortran ranges from the largest negative number to the largest positive
number (thus, -100.0 is smaller than 0.5).

A few examples:

 real :: val1, val2
 logical :: result

 val1 = -3.5
 val2 = 2.0

 result = val1 < val2 ! result equals .true.
 result = val1 >= val2 ! result equals .false.
 result = val1 < (val2 – 2.0) ! result equals .true.

Be careful though with comparing real numbers. Reals are represented with finite
accuracy. Thus:

 print*, 2 * 3.2

may give as output: 6.4000001. So instead of comparing two real variables a and b like:

 a == b

it is safer to compare their difference:

 real, parameter :: delta = 0.000001
 abs(a-b) < delta ! equals .true. if a and b are numerically identical

The function abs returns the absolute value of (a-b).

Intrinsic functions

Intrinsic functions are functions that are part of the language. Fortran, as a scientific
language aimed at numerical applications, contains a large number of mathematical
functions.

 11

Fortran 90/95 Programming Manual

The mathematical functions are:

==
 acos (x) inverse cosine (arc cosine) function
 asin (x) inverse sine (arc sine) function
 atan (x) inverse tangent (arc tangent) function
 atan2 (x) arc tangent for complex numbers
 cos (x) cosine function
 cosh (x) hyperbolic cosine function
 exp (x) exponential function
 log (x) natural logarithm function
 log10 (x) common logarithm function
 sin (x) sine function
 sinh (x) hyperbolic sine function
 sqrt (x) square root function
 tan (x) tangent function
 tanh (x) hyperbolic tangent function
==
Some other useful intrinsic functions are:

===
 abs (x) absolute value of the numerical argument x
 complx (x,y [, ikind]) convert to complex. The ikind argument is optional. If

not specified, the conversion is to default precision.
 floor (x) greatest integer less than or equal to x. Examples: floor

(3.4) equals 3, floor (-3.4) equals –4.
 int (x) convert to integer. If abs (x < 1), the result is 0. If abs

(x) >= 1, the result is the largest integer not exceeding x
(keeping the sign of x). Examples: int(0.3) equals 0, int (-
0.3) equals 0, int (4.9) equals 4, int (-4.9) equals –4.

 nint (x [, ikind]) rounds to nearest integer.
 real (x [, ikind]) convert to real. The ikind argument is optional. If not

specified, the conversion is to default precision.
 mod (a,p) remainder function. Result is a – int (a/p) * p. The

arguments a and p must be of the same type (real or
integer).

 modulo (a,p) modulo function. Result is a – floor (a/p) * p. The
arguments a and p must be of the same type (real or
integer).

==

Simple in- and output

As we have seen in the hello.f90 program above, characters can be displayed on the
screen by the print* statement. Data can be transferred into the program by the read*
statement. This is the simplest form of input/output (I/O), called list-directed
input/output. As an example, with pi being declared as in the previous section, the
statement

 12

Fortran 90/95 Programming Manual

 print*, “The number pi = “, pi

might appear on the screen as

 The number pi = 3.141590

The exact format is dependent on the computer system used. Later we will see a more
sophisticated form of I/O, using read and write, which gives the programmer more
control over the format.

The following read statement (with x, y, and z being declared as variables of type real)

 read*, x, y, z

expects three numbers to be typed, separated by a comma, one or more spaces, or a slash
(/). The variable x will have the value of the first number typed, y will have the value of
the second number typed, and z of the third number typed.

Comments

We have already seen the exclamation mark (!). All characters after the exclamation
mark are ignored. Comments can be used for descriptive purposes, or for “commenting
out” a line of code.

Continuation lines

The maximum length of a Fortran statement is 132 characters. Sometimes statements are
so long that they don’t fit on one line. The continuation mark (&), placed at the end of
the line, allows the statement to continue on the next line. Fortran 90 allows a maximum
of 39 continuation lines.

Thus, the following code

 cos (alpha) = b*b + c*c – &
 2*b*c*cos (gamma)

is identical to

 cos (alpha) = b*b + c*c – 2*b*c*cos (gamma)

Summary

• A program starts with program program_name and ends with end program
program_name.

• The first statement should always be implicit none.
• We have learned the different types of variables and constants in Fortran: integer,

real, complex, logical and character, and how to declare them in type
declaration statements.

• The arithmetic operators: **, *, /, + and -.
• The logical operators: .not., .and., .or., .eqv., and .neqv.
• The relational operators: <, <=, >, >=, == and /=.
• We learned the mathematical functions, and a selection of other intrinsic functions.
• We learned how to read in variables and how to write to the screen.

 13

Fortran 90/95 Programming Manual

Exercises

1. Which of the following are valid names in Fortran 90:
a. this_is_a_variable
b. 3dim
c. axis1
d. y(x)
e. dot.com
f. DotCom
g. z axis

2. Write a program that reads in a number, and computes the area of a circle that has a
diameter of that size.

3. Find out, for your compiler, what the compiler flags are for displaying warning
messages, and for issuing a warning when the compiler encounters non-standard
source code.

4. Write a program that reads in a time in seconds, and computes how many hours and
minutes it contains. Thus, 3700 should yield: 1 hour, 1 minute, and 40 seconds.
(Hint: use the mod function).

3. Control Constructs
Control Constructs

A program can consist of several statements, which are executed one after the other:

 program program_name

 implicit none

 statement1
 statement2
 statement3
 statement4

 end program_name

However, this rigid sequence may not suit the formulation of the problem very well. For
example, one may need to execute the same group of statements many times, or two
different parts of the program may need to be executed, depending on the value of a
variable. For this, Fortran 90 has several constructs that alter the flow through the
statements. These include if constructs, do loops, and case constructs.

If constructs:

The simplest form of an if construct is:

 if (logical expression) then
 statement
 end if

 14

Fortran 90/95 Programming Manual

as in:

 if (x < y) then
 x = y
 end if

The statement x = y is only executed if x is smaller than y.

Several statements may appear after the logical expression. The if block can also be
given a name, so the more general form of the if construct is:

 [name:] if (logical expression) then

 ! various statements
 . . .

 end if [name]

Both endif and end if are allowed. The name preceding the if is optional (but if it is
specified, the name after the endif must be the same).

The block if statement can also contain an else block:

 [name:] if (logical expression) then

 ! various statements
 . . .

 else

 ! some more statements
 . . .

 end if [name]

 16

Fortran 90/95 Programming Manual

Block if statements can be nested:

 [name:] if (logical expression 1) then

 ! block 1

 else if (logical expression 2) then

 ! block 2

 else if (logical expression 3) then

 ! block 3

 else

 ! block 4

 end if [name]

Example (try to follow the logic in this example):

 if (optimisation) then
 print*, "Geometry optimisation: "

 if (converged) then
 print*, "Converged energy is ", energy
 else
 print*, "Energy not converged. Last value: ", energy
 end if

 else if (singlepoint) then
 print*, "Single point calculation: "
 print*, "Energy is ", energy
 else
 print*, "No energy calculated."
 end if

Indentation is optional, but highly recommended: a consistent indentation style helps to
keep track of which if, else if, and end if belong together (i.e., have the same “if level”).

Do loops

A program often needs to repeat the same statement many times. For example, you may
need to sum all elements of an array.

 17

Fortran 90/95 Programming Manual

You could write:

 real, dimension (5) :: array1
 real :: sum

 ! here some code that fills array1 with numbers
 . . .

 sum = array1(1)
 sum = sum + array1(2)
 sum = sum + array1(3)
 sum = sum + array1(4)
 sum = sum + array1(5)

But that gets obviously very tedious to write, particularly if array1 has many elements.
Additionally, you may not know beforehand how many times the statement or statements
need to be executed. Thus, Fortran has a programming structure, the do loop, which
enables a statement, or a series of statements, to be carried out iteratively.

For the above problem, the do loop would take the following form:

 real, dimension (5) :: array1
 real :: sum
 integer :: i ! i is the “control variable” or counter

 ! here some code that fills array1 with numbers
 . . .

 sum = 0.0 ! sum needs to be initialised to zero
 do i = 1, 5
 sum = sum + array1(i)
 end do

Both enddo and end do are allowed.

It is possible to specify a name for the do loop, like in the next example. This loop prints
the odd elements of array2 to the screen. The name (print_odd_nums in this case) is
optional. The increment 2 specifies that the counter i is incremented with steps of 2, and
therefore, only the odd elements are printed to the screen. If no increment is specified, it
is 1.

 real, dimension (100) :: array2
 integer :: i

 ! here some code that fills array2 with numbers
 . . .

 print_odd_nums: do i = 1, 100, 2
 print*, array2(i)
 end do print_odd_nums

 18

Fortran 90/95 Programming Manual

Do loops can be nested (one do loop can contain another one), as in the following
example:

 real, dimension (10,10) :: a, b, c ! matrices
 integer :: i, j, k

 ! here some code to fill the matrices a and b
 . . .

 ! now perform matrix multiplication: c = a + b
 do i = 1, 10
 do j = 1, 10
 c(i, j) = 0.0
 do k = 1, 10
 c(i, j) = c(i, j) + a(i, k) + b(k, j)
 end do
 end do
 end do

Note the indentation, which makes the code more readable.

Endless Do

The endless do loop takes the following form:

 [doname:] do
 ! various statements
 exit [doname]
 ! more statements
 end do [doname]

Note the absence of the control variable (counter). As before, the name of the do loop is
optional (as indicated by the square brackets).

To prevent the loop from being really “endless”, an exit statement is needed. If the exit
statement is executed, the loop is exited, and the execution of the program continues at
the first executable statement after the end do.

The exit statement usually takes the form

 if (expression) then
 exit
 end if

 19

Fortran 90/95 Programming Manual

as in the following example:

 program integer_sum
 ! this program sums a series of numbers given by the user
 ! example of the use of the endless do construct

 implicit none
 integer :: number, sum

 sum = 0
 do
 print*, “give a number (type –1 to exit): “
 read*, number

 if (number == -1) then
 exit
 end if

 sum = sum + number
 end do

 print*, “The sum of the integers is “, sum

 end program integer_sum

The name of the do loop can be specified in the exit statement. This is useful if you want
to exit a loop in a nested do loop construct:

 iloop: do i = 1, 3
 print*, "i: ", i
 jloop: do j = 1, 3
 print*, "j: ", j
 kloop: do k = 1, 3
 print*, "k: ", k

 if (k==2) then
 exit jloop
 end do kloop

 end do jloop
 end do iloop

When the exit statement is executed, the program continues at the next executable
statement after end do jloop. Thus, the first time that exit is reached is when i=1, j=1,
k=2, and the program continues with i=2, j=1, k=1.

A statement related to exit is the cycle statement. If a cycle statement is executed, the
program continues at the start of the next iteration (if there are still iterations left to be
done).

 20

Fortran 90/95 Programming Manual

Example:

 program cycle_example

 implicit none

 character (len=1) :: answer
 integer :: i

 do i = 1, 10

 print*, “print i (y or n)?”
 read*, answer

 if (answer == “n”) then
 cycle
 end if

 print*, i

 end do

 end program cycle_example

Case constructs

The case construct has the following form:

 [name:] select case (expression)
 case (selector1)
 ! some statements
 . . .
 case (selector2)
 ! other statements
 . . .
 case default
 ! more statements
 . . .
 end select [name]

As usual, the name is optional. The value of the selector, which can be a logical,
character, or integer (but not real) expression, determines which statements are executed.
The case default block is executed if the expression in select case (expression) does
not match any of the selectors.

A range may be specified for the selector, by specifying an lower and upper limit
separated by a colon:

 case (low:high)

 21

Fortran 90/95 Programming Manual

Example:

 select case (number)

 case (: -1)
 print*, “number is negative”

 case (0)
 print*, “number is zero”

 case (1 :)
 print*, “number is positive”

 end select

The following example program asks the user to enter a number between 1 and 3. The
print and read are in an endless loop, which is exited when a number between 1 and 3 has
been entered.

 program case_example

 implicit none

 integer :: n

 ! Ask for a number until 1, 2, or 3 has been entered
 endless: do

 print*, "Enter a number between 1 and 3: "
 read*, n

 select case (n)
 case (1)
 print*, "You entered 1"
 exit endless
 case (2)
 print*, "You entered 2"
 exit endless
 case (3)
 print*, "You entered 3"
 exit endless
 case default
 print*, "Number is not between 1 and 3"
 end select

 end do endless

 end program case_example

 22

Fortran 90/95 Programming Manual

Summary

In this chapter we learned the following control constructs:

block if statements. •

•

•

do loops (including endless do loops).

case statements.

Exercises

5. Write a program which calculates the roots of the quadratic equation ax2 + bx + c = 0.
Distinguish between the three cases for which the discriminant (b2 - 4ac) is positive,
negative, or equal to zero. Use an if construct. You will also need to use the intrinsic
function cmplx.

6. Consider the Fibonacci series:
 1 1 2 3 5 8 13 …
 Each number in the series (except the first two, which are 1) is the sum from the two

previous numbers. Write a program that reads in an integer limit, and which prints
the first limit terms of the series. Use an nested if block structure. (You need to
distinguish between several cases: limit < 0, limit =1, etc.)

7. Rewrite the previous program using a case construct.

8. Write a program that
defines an integer array to have 10 elements
a) fills the array with ten numbers
b) reads in 2 numbers (in the range 1-10)
c) reverses the order of the array elements in the range specified by the two numbers.
Try not to use an additional array.

9. Write a program that reads in a series of integer numbers, and determines how many
positive odd numbers are among them. Numbers are read until a negative integer is
given. Use cycle and exit.

4. Procedures
Program units

A program can be built up from a collection of program units (the main program,
modules and external subprograms or procedures). Each program must contain one (and
only one) main program, which has the familiar form:

 program program_name

 implicit none
 ! type declaration statements
 ! executable statements

 end program program_name

Modules will be discussed later.

 23

Fortran 90/95 Programming Manual

Procedures

A subprogram or procedure is a computation that can be “called” (invoked) from the
program. Procedures generally perform a well-defined task. They can be either
functions or subroutines. Information (data) is passed between the main program and
procedures via arguments. (Another way of passing information is via modules, see
Chapter 6.) A function returns a single quantity (of any type, including array), and
should, in principle, not modify any of its arguments. (In the stricter F language, a
function is simply not allowed to modify its arguments). The quantity that is returned is
the function value (having the name of the function). We have already seen one type of
functions in Chapter 2, namely built-in or intrinsic functions, which are part of the
Fortran 90 language (such as cos or sqrt).

An example of a function:

 function circle_area (r)
 ! this function computes the area of a circle with radius r

 implicit none

 ! function result
 real :: circle_area

 ! dummy arguments
 real :: r

 ! local variables
 real :: pi

 pi = 4 * atan (1.0)
 circle_area = pi * r**2

 end function circle_area

The structure of a procedure closely resembles that of the main program. Note also the
use of implicit none. Even if you have specified implicit none in the main program, you
need to specify it again in the procedure.

The r in the function circle_area is a so-called dummy argument. Dummy arguments are
replaced by actual arguments when the procedure is called during execution of the
program. Note that the function has a “dummy arguments” block and a “local variables”
block, separated by comments. While this is not required, it makes the program clearer.

The function can be used in a statement like:

 a = circle_area (2.0)

This causes the variable a to be assigned the value 4π.

This is, by the way, not a very efficient way to calculate the area of a circle, as π is
recalculated each time this function is called. So if the function needs to be called many
times, it will be better to obtain π differently, for example by declaring:

 real, parameter :: pi = 3.141592654

 24

Fortran 90/95 Programming Manual

The result of a function can be given a different name than the function name by the
result option:

function circle_area (r) result (area)
 ! this function computes the area of a circle with radius r

 implicit none

 ! function result
 real :: area

 ! dummy arguments
 real :: r

 ! local variables
 real, parameter :: pi = 3.141592654

 area = pi * r**2

 end function circle_area

The name specified after result (area in this case) must be different from the function
name (circle_area). Also note the type declaration for the function result (area). This
function is used in the same way as before:

 a = circle_area (radius)

The result option is in most cases optional, but it is required for recursive functions, i.e.,
functions that call themselves (see paragraph on “recursive functions” below).

An example of a subroutine:

 subroutine swap (x, y)

 implicit none

 ! dummy arguments
 real :: x, y

 ! local variables
 real :: buffer

 buffer = x ! store value of x in buffer
 x = y
 y = buffer

 end subroutine swap

A subroutine is different from a function in several ways. Subroutines can modify their
arguments, and they do not return a single “result” as functions do. Functions return a
value that can be used directly in expressions, such as:

 a = circle_area (radius)

A subroutine must be “call”ed, as in:

 call swap (x,y)

 25

Fortran 90/95 Programming Manual

The general rule is that it is best to use a function if the procedure computes only one
result, and does not much else. In all other cases, use a procedure.

 26

Fortran 90/95 Programming Manual

External procedures

An example of a program that contains two functions:

 program angv1v2

 implicit none

 real, dimension (3) :: v1, v2
 real :: ang

 ! define two vectors v1 and v2

 v1(1) = 1.0
 v1(2) = 0.0
 v1(3) = 2.0

 v2(1) = 1.5
 v2(2) = 3.7
 v2(3) = 2.0

 print*, "angle = ", ang (v1, v2)

 end program angv1v2

 ! ang computes the angle between 2 vectors vect1 and vect2
 function ang (vect1, vect2)

 implicit none

 ! function result
 real :: ang

 ! dummy arguments
 real, dimension (3), intent (in) :: vect1, vect2

 ! local variables
 real :: cosang, norm

 cosang = vect1(1)*vect2(1) + vect1(2)*vect2(2) + vect1(3)*vect2(3)
 cosang = cosang / (norm(vect1)*norm(vect2))
 ang = acos (cosang)

 end function ang

 ! norm returns the norm of the vector v
 function norm (v)

 implicit none

 real :: norm

 ! dummy arguments
 real, dimension (3) :: v

 norm = sqrt (v(1)**2 + v(2)**2 + v(3)**2)

 end function norm

 27

Fortran 90/95 Programming Manual

This program illustrates that the actual argument (v1 and v2) may have a name different
from the dummy arguments vect1 and vect2 of the function ang. This allows the same
function to be called with different arguments. The intent attribute is explained in the
next paragraph. Note that the type of the function norm must be declared in the function
ang. An alternative to this is to provide an explicit interface, see section on Interfaces
below.

As mentioned before, a subroutine must be “call”ed, as the following program illustrates:

 program swap_xy

 implicit none
 real :: x, y

 x = 1.5
 y = 3.4
 print*, “x = “, x, “ y = “, y
 call swap (x,y)
 print*, “x = “, x, “ y = “, y

 end program swap_xy

 subroutine swap (x, y)

 implicit none

 ! dummy arguments
 real, intent (inout) :: x, y

 ! local variables
 real :: buffer

 buffer = x ! store value of x in buffer
 x = y
 y = buffer
 end subroutine swap

When executed, this program gives as output:
 x = 1.5 y = 3.4
 x = 3.4 y = 1.5
(The exact format of the displayed numbers is dependent on the computer system used.)

Note that the functions appear after the end of the main program. Subroutines or
functions that are not contained in the main program are called external procedures.
These are the most common type of procedures. External procedures are stand-alone
procedures, which may be developed and compiled independently of other procedures
and program units. The subroutines do not have to be in the same file as the main
program. If the two functions in the example program angv1v2 above are in a file
vector.f90, and the main program is in a file called angle.f90, then a compilation of the
program may look like this (for the SGI MIPS Fortran 90 compiler for example. The
actual format of the compilation is compiler-specific, and may look different with another
compiler):

 28

Fortran 90/95 Programming Manual

 f90 –ansi –fullwarn –o angle angle.f90 vector.f90

The compiler flag –ansi causes the compiler to generate messages when it encounters
source code that does not conform to the Fortran 90 standard, -fullwarn turns on all
warning messages, and –o specifies the name of the output file, to which the executable
will be written to.

The compilation can also be done in two steps:
 f90 –ansi –fullwarn –c angle.f90 vector.f90
 f90 –ansi –fullwarn –o angle angle.o vector.o

The first step creates binary object files vector.o and angle.o. The second (link) step
creates the executable (angle).

Intent

Fortran allows the specification of the “intention” with which arguments are used in the
procedure:

intent (in): Arguments are only used, and not changed
intent (out): Arguments are overwritten
intent (inout): Arguments are used and overwritten

Consider the following example:

 subroutine intent_example (a, b, c)

 implicit none

 ! dummy arguments
 real, intent (in) :: a
 real, intent (out) :: b
 real, intent (inout) :: c

 b = 2 * a
 c = c + a * 2.0

 end subroutine intent_example

In this subroutine, a is not modified, and thus has intent (in); b is given a value and has
therefore intent (out); c is used and modified, intent (inout). It is good programming
practice to use intent. Firstly, it makes procedures more transparent, i.e., it is clearer
what the procedure does. Secondly, the compiler may catch programming mistakes,
because most compilers will warn you if you, for example, try to modify an argument
that has intent (in). Thirdly, it may help optimisation if the compiler knows which
arguments are changed in a subroutine.

 29

Fortran 90/95 Programming Manual

Even though it is advisable to use intent, it is possible to introduce bugs in the program
by giving arguments the wrong intent. Consider the following code:

 program test

 implicit none

 integer, dimension (10) :: array
 integer :: i

 do i = 1, 10
 array(i) = i
 end do

 call modify_array (a)

 end program test

 subroutine modify_array (a)

 implicit none

 ! dummy arguments
 integer, dimension (10), intent (inout) :: a

 ! local variables
 integer :: i

 do i = 1,3
 a(i) = 0.0
 end do

 end subroutine modify_array

The intent of array a in the subroutine has to be inout, even though it seems like you are
only writing into the array, and do not need to know the values of its elements. If you
would make the intent out however, then it is possible that, after calling the subroutine,
the elements a(4) to a(10) contain “garbage” (unpredictable contents), because the
subroutine did not read in these elements (so cannot know their values), but did write
them out (thereby overwriting their previous values).

Interfaces

The interface of a procedure is a collection of the names and properties of the procedure
and its arguments. When a procedure is external, the compiler will (in most cases) not
know about its interface, and cannot check if the procedure call is consistent with the
procedure declaration (for example, if the number and types of the arguments match).

Providing an explicit interface makes such cross-checking possible. It is thus good
programming practice to specify interfaces for external procedures. In certain cases, an
interface is required. So it is best to provide an explicit interface for external procedures.
(For space-saving reasons, the example programs in this manual do not always have
them).

 30

Fortran 90/95 Programming Manual

The interface block contains the name of the procedure, and the names and attributes
(properties) of all dummy arguments (and the properties of the result, if it defines a
function).

If we take as example the program swap_xy from above, then the interface for the
subroutine swap would look like:

 interface
 subroutine swap (x, y)
 real, intent (inout) :: x, y
 end subroutine swap
 end interface

The interface block is placed at the beginning of the program (or at the beginning of a
procedure), together with the declaration statements:

 program swap_xy

 implicit none

 ! local variables
 real :: x, y

 ! external procedures
 interface
 subroutine swap (x, y)
 real, intent (inout) :: x, y
 end subroutine swap
 end interface

 x = 1.5
 y = 3.4
 print*, “x = “, x, “ y = “, y
 call swap (x,y)
 print*, “x = “, x, “ y = “, y

 end program swap_xy

 subroutine swap (x, y)

 implicit none

 ! dummy arguments
 real, intent (inout) :: x, y

 ! local variables
 real :: buffer

 buffer = x ! store value of x in buffer
 x = y
 y = buffer

 end subroutine swap

 31

Fortran 90/95 Programming Manual

If a procedure proc1 calls another procedure proc2, then the interface block of proc2
should be placed at the beginning of the procedure proc1.

Another way of providing explicit interfaces will be discussed in the chapter on Modules
(Chapter 6).

Recursive procedures

A procedure that calls itself (directly or indirectly) is called a recursive procedure. Its
declaration must be preceded by the word recursive. When a function is used recursively,
the result option must be used.

The factorial of a number (n!) can be computed using a recursive function:

 recursive function nfactorial (n) result (fac)
 ! computes the factorial of n (n!)

 implicit none

 ! function result
 integer :: fac

 ! dummy arguments
 integer, intent (in) :: n

 select case (n)
 case (0:1)
 fac = 1
 case default
 fac = n * nfactorial (n-1)
 end select

 end function nfactorial

Internal procedures

Internal procedures are contained within a program unit. A main program containing
internal procedures has the following form:

 program program_name
 implicit none
 ! type declaration statements
 ! executable statements
 . . .
 contains
 ! internal procedures
 . . .
 end program program_name

 32

Fortran 90/95 Programming Manual

With our function circle_area from above:

 program area

 implicit none
 real :: radius, a

 radius = 1.4
 a = circle_area (radius)
 print*, “The area of a circle with radius “, radius, “ is “, a

 contains

 function circle_area (r)
 ! this function computes the area of a circle with radius r

 implicit none

 ! function result
 real :: circle_area

 ! dummy arguments
 real, intent (in) :: r

 ! local variables
 real, parameter :: pi = 3.141592654

 circle_area = pi * r**2

 end function circle_area

 end program area

An internal procedure is local to its host (the program unit containing the internal
procedure), and the environment (i.e., the variables and other declarations) of the host
program is known to the internal procedure.

Thus, the function circle_area knows the value of the variable radius, and we could
have written the function also like:

 function circle_area
 ! this function computes the area of a circle with radius r

 implicit none

 ! function result
 real :: circle_area

 ! local variables
 real, parameter :: pi = 3.141592654

 circle_area = pi * radius**2

 end function circle_area

 end program area

 33

Fortran 90/95 Programming Manual

and simple called the function like:

 a = circle_area

However, the first form allows the function to be called with varying arguments (and it
more transparent as well):

 a1 = circle_area (radius)
 a2 = circle_area (3.5)

Internal procedures are not very common. In most cases, it is better to use external
procedures. External procedures can be called from more than one program unit, and
they are safer: The variables of the calling program are hidden from the procedure, i.e.,
the procedure does not know the values of the variables (unless they are passed as
arguments), and it can only change them if they are passed as arguments with intent
(inout). However, an advantage of internal procedures is that they can be better
optimised by the compiler.

Assumed character length

A character dummy argument can be declared with an asterisk for the length the len
parameter. This allows the procedure to be called with character strings of any length.
The length of the dummy argument is taken from that of the actual argument.

Example:

 program assumed_char

 implicit none

 character (len=5) :: name

 name = “Tanja”
 call print_string (name)

 end program assumed_char

 subroutine print_string (name)

 implicit none

 ! dummy arguments
 character (len=*), intent (in) :: name

 print*, name

 end subroutine print_string

Summary

This chapter discussed how to break a program down into manageable units, which each
correspond to a specific programming task. The program units we saw in this chapter
are:

• The main program
• External procedures (subroutines and functions)
• Internal procedures (subroutines and functions)
• Recursive procedures

 34

Fortran 90/95 Programming Manual

Good programming practice requires the use of the intent attribute for the dummy
arguments of procedures, and the use of interface blocks for external procedures.

Exercises

Choose any two of exercises 11-13:

10. Write a program that, given the xyz coordinates of four atoms, returns the dihedral
between the atoms. The dihedral (or torsion) angle of four atoms A-B-C-D is defined
as the angle between the plane containing the atoms A, B, and C, and the plane
containing B, C, and D.

A

C
B

D
β

11. Consider the Fibonacci series:
 1 1 2 3 5 8 13 …
 Each number in the series (exceptt the first 2, which are 1) is the sum from the two

previous numbers. Write a program that computes the nth number in the Fibonacci
series, where n is given by the user. Use a recursive function.

12. Bubble sort.
Create an unordered data set of integers (for example by reading them in), and write
a subroutine to sort them in ascending order. One of the easiest sort algorithms is
bubble sort. Start at the lower end of the array. Compare elements 1 and 2, and
swap them if necessary. Then proceed to the next 2 elements (2 and 3), and continue
this process through the entire array. Repeat the whole process ndim (dimension of
array) times. Note that in successive rounds you only have to go through smaller and
smaller sections of the array, because the last element(s) should now already be
sorted. This process is called “bubble sort” because the larger elements appear to
bubble through the array to reach their places.

5 More on Arrays
Declaring arrays

In chapter 2 we have seen that we can declare arrays with the dimension attribute:

 real, dimension (3) :: coords ! 1-dimensional real array
 integer, dimension (10,10) :: block ! 2-dimensional integer array

Up to seven dimensions are allowed.

 35

Fortran 90/95 Programming Manual

An alternative way of declaring these arrays is as follows:

 real :: coords(3)
 integer :: block(10,10)

In this manual, the first method is used.

Arrays can also be declared with explicit lower bounds. For the above arrays:

 real, dimension (1:3) :: coords
 integer, dimension (-5:5, 0:9) :: block

The type declaration statement for the array block shows that the lower bound does not
have to be 1. If the lower bound is not specified explicitly, it is taken to be 1.

Array terminology

Rank: The rank of an array is the number of dimensions it has. In our examples above,
the rank of coords is 1 and the rank of block is 2.

Extent: The number of elements along a dimension is its extent. Thus, the extent of
coords is 3 and the extent of both the first and second dimension of block is 10.

Shape: The shape of an array is a one-dimensional integer array, containing the number
of elements (the extent) in each dimension. Thus, the shape of array coords is (3), and
the shape of block is (10,10). Two arrays of the same shape are “conformable”.

Size: The size of an array is the number of elements it contains. The size of coords is 3
and the size of block is 100.

Array assignment statements

Array elements can be given a value in the usual way:

 coords(1) = 3.5
 block(3,2) = 7

Or in a loop:

 do i = 1,3
 coords(i) = 0.0
 end do

For arrays of rank one (one-dimensional arrays), the following shorthand notation is also
possible:

 coords = (/ 1.3, 5.6, 0.0 /)

These shorthand notations of “constructing” the array elements are called array
constructors. Note that the “(/” and “/)” are a single symbol, thus, no spaces are allowed
between the (and / characters.

 36

Fortran 90/95 Programming Manual

The following constructors are also allowed:

 coords = (/ (2.0*i, i = 1, 3) /) ! yields (2.0, 4.0, 6.0)
 odd_ints = (/ (i, i = 1, 10, 2) /) ! yields (1, 3, 5, 7, 9)

These two examples use so-called implied do loops. Note the additional parentheses
around the implied do loop.

The array constructors allow the definition of array constants:

 integer, dimension (8), parameter :: primes = (/ 1, 2, 3, 7, 11, 13, 17, 19 /)

Array sections

Sections of arrays can be referenced. For example, consider an integer array a with
dimension (3,4).

a(1,1) a(1,2) a(1,3)

a(2,2) a(2,3) a(2,1)

a(3,1) a(3,2) a(3,3)

a(1,4)

a(2,4)

a(3,4)

Then, a(1:2, 3) references the elements a(1,3) and a(2,3). The whole last column can be
referenced as a(1:3,4) or simply a(:, 4), and the first row as a(1, :). Optionally, a stride
can be specified as well. The syntax is (for each dimension):

[lower] : [upper] [: stride]

In a(1, 1:4:2) lower= 1, upper = 4 and stride = 2 (for the second dimension). Thus, a(1,
1:4:2) references the elements a(1,1) and a(1,3).

Array expressions

The arithmetic operators (**, *, /, +, -) can be applied to arrays (or array sections) that
have the same shape (are conformable).

For example, a two-dimensional array b(2,3) can be added to the array section a(2:3, 1:3)
of the array a of the previous section. If the array c is an array of dimension (2,3), then
the expression

 c = a(2:3,1:3) + b

causes the elements of the array c to have the following values:

 c(1,1) = a(2,1) + b(1,1)
 c(2,1) = a(3,1) + b(2,1)
 c(1,2) = a(2,2) + b(1,2)
 c(2,2) = a(3,2) + b(2,2)
 c(1,3) = a(2,3) + b(1,3)
 c(2,3) = a(3,3) + b(2,3)

 37

Fortran 90/95 Programming Manual

The same can be achieved by using a do loop:

 do i = 1, 3
 do j = 1, 2
 c(j,i) = a(j+1,i) + b(j,i)
 end do
 end do

But the expression c = a(2:3,1:3) + b is clearly more concise.

The operator + in the above example can be replaced by any of the other arithmetic
operators. The following expressions are all valid:

 c = a(2:3,1:3) * b ! c(1,1) = a(2,1) * b(1,1), etc.
 c = a(2:3,1:3) / b ! c(1,1) = a(2,1) / b(1,1), etc.
 c = a(2:3,1:3) – b ! c(1,1) = a(2,1) - b(1,1), etc.
 c = a(2:3,1:3) ** b ! c(1,1) = a(2,1) ** b(1,1), etc.

Note that the operation is done element by element. Thus, the result of the multiplication
a(2:3,1:3) * b is not a matrix product!

Scalars can be used in an array expression as well. Thus, a / 2.0 has the effect of
dividing all elements of the array a by 2.0, and a**2 raises all the elements of a to the
power 2.

Array expressions can be used to avoid do-loops. For example, the expression

 a(1:4) = a(2:5)

Is equivalent to

 do i = 1, 4
 a(i) = a(i+1)
 end do

However, if the do loop iterations are interdependent, then the do loop and the array
expression are not equivalent. This is because in the do loop the elements of the array are
updated after each iteration, and in the array expression the updating is done only after all
the elements have been processed.

For example, if the array a contains the numbers 1, 2, 3, 4, 5, then

 do i = 1,4
 a(i+1) = a(i)
 end do

yields 1, 1, 1, 1, 1

(After the first iteration, the array contains 1, 1, 3, 4, 5, after the second 1, 1, 1, 4, 5, after
the third 1, 1, 1, 1, 5 and after the fourth 1, 1, 1, 1, 1).

However,

 a(2:5) = a(1:4)

yields 1, 1, 2, 3, 4.

 38

Fortran 90/95 Programming Manual

Using array syntax instead of do loops may help an optimising compiler to optimise the
code better in specialised cases (for example on a parallel machine).

Dynamic arrays

Sometimes you don’t know the necessary size of an array until the program is run, the
size may for example depend on some calculations, or be defined by the user. In Fortran
90, this can be done by using dynamic arrays. A dynamic array is an array of which the
size is not known at compile time (the rank must be specified, however), but becomes
known when running the program.

A dynamic array has to be declared with the attribute allocatable, and it has to be
“allocated” when its size is known and before it is used.

 program dynamic_array

 implicit none

 real, dimension (:,:), allocatable :: a
 integer :: dim1, dim2
 integer :: i, j

 print*, "Give dimensions dim1 and dim2: "
 read*, dim1, dim2

 ! now that the size of a is know, allocate memory for it
 allocate (a(dim1,dim2))

 do i = 1, dim2
 do j = 1, dim1
 a(j,i) = i*j
 print*, "a(",j,",",i,") = ", a(j,i)
 end do
 end do

 deallocate (a)
 end program dynamic_array

When the array is no longer needed, it should be deallocated. This frees up the storage
space used for the array for other use.

 39

Fortran 90/95 Programming Manual

Assumed shape arrays

Arrays can be passed as arguments to procedures, as the following example illustrates:

 program dummy_array

 implicit none

 integer, dimension (10) :: a

 call fill_array (a)
 print, a

 end program dummy_array

 subroutine fill_array (a)

 implicit none

 ! dummy arguments
 integer, dimension (10), intent (out) :: a

 ! local variables
 integer :: i

 do i = 1, 10
 a(i) = i
 end do

 end subroutine fill_array

However, written like this, the subroutine fill_array can only be called with arrays of
dimension 10. It would clearly be advantageous if routines can be used for arrays of any
size. To accomplish this, several techniques can be used to “hide” the array size from the
procedure. In Fortran 90, the most flexible way of doing this is by using the assumed
shape technique. In the procedure, the shape of the array is not specified, but is taken
automatically to be that of the corresponding actual argument. The size of the array (the
number of elements it contains, size_a in the example below), is determined in the
subroutine using the intrinsic function size. size (array, dim) returns the number of
elements along a specified dimension dim. The argument dim is optional. If it not
specified, size sums the number of elements in each dimension.

 40

Fortran 90/95 Programming Manual

The above program can be rewritten as follows:

program dummy_array

 implicit none

 integer, dimension (10) :: a

 interface

 subroutine fill_array (a)
 integer, dimension (:) intent (out) :: a
 integer :: i
 end subroutine fill_array

 end interface

 call fill_array (a)
 print, a

 end program dummy_array

 subroutine fill_array (a)

 implicit none

 ! dummy arguments
 integer, dimension (:), intent (out) :: a

 ! local variables
 integer :: i, size_a

 size_a = size (a)

 do i = 1, size_a
 a(i) = i
 end do

 end subroutine fill_array

Note that, in this case, the explicit interface is required. The procedure fill_array can now
be called with arrays of any size.

 41

Fortran 90/95 Programming Manual

Multidimensional arrays can also be passed to procedures in this way:

 program example_assumed_shape

 implicit none

 real, dimension (2, 3) :: a
 integer :: i, j

 interface

 subroutine print_array (a)
 real, dimension (: , :), intent (in) :: a
 end subroutine print_array

 end interface

 do i = 1, 2
 do j = 1, 3
 a(i, j) = i * j
 end do
 end do

 call print_array (a)

 end program example_assumed_size

 subroutine print_array

 implicit none

 ! dummy arguments
 real,dimension (: , :), intent (in) :: a

 print*, a

 end subroutine print_array

Note that the rank (i.e., the number of dimensions) must be explicitly defined in the
procedure, but the shape (the extent of each dimension) is taken from the actual argument.
If required, in the subroutine print_array the size of the array can be found out by the
function size. In this case, size (a) would yield 6, size (a, 1) would yield 2, and size (a,
2) would yield 3.

Summary

This chapter showed some more advanced array manipulations, such as implied do loops
and array expressions. A very useful concept is that of dynamic (allocatable) arrays,
which did not exist in FORTRAN 77. We have seen how the shape of an array can be
passed implicitly to a procedure by using assumed shape arrays.

 42

Fortran 90/95 Programming Manual

Exercises

13. Given the array declaration:
real, dimension (24, 10) :: a

Write array sections representing:
a) the second column of a
b) the last row of a
c) the block in the upper left corner of size 2 x 2.

14. Rewrite exercise 3.8 using array syntax instead of do loops.

6. Modules
Modules

A module serves as a packaging means for subprograms, data and interface blocks.
Modules are a new and powerful feature of Fortran 90. They make common blocks
(routinely used in FORTRAN 77) and include statements obsolete.

A module consists of two parts: a specification part for the declaration statements
(including interface blocks and type and parameter declarations), and a subprogram part.

The general form of a module is:

 module module_name

 ! specification statements

 contains

 ! procedures

 end module module_name

Modules can contain just the specification part or the subprogram part, or both.

The following example contains both:

 module constants

 implicit none

 real, parameter :: pi = 3.1415926536
 real, parameter :: e = 2.7182818285

contains

 subroutine show_consts()

 print*, “pi = “, pi
 print*, e = “. e

 end subroutine show_consts

end module constants

 43

Fortran 90/95 Programming Manual

Note the implicit none. Just like with procedures, it is good programming practice to use
implicit none in modules. It only needs to be specified once i.e., it is not necessary to
specify implicit none again in the module’s procedures.

Modules are accessed by the use statement:

 program module_example

 use constants
 implicit none

 real :: twopi

 twopi = 2 * pi
 call show_consts()
 print*, “twopi = “, twopi

 end program module_example

The use statement makes available to the main program all the code (specification
statements and subprograms) in the module constants. It supplies an explicit interface of
all the module’s procedures. The use statement has to be the first statement in the
program (it comes even before implicit none), only comments are allowed before use.

When a subroutine is defined in a module, then there is no need to provide an explicit
interface in the calling program (as long as the module’s contents are made available to
the program via the use statement).

Accessibility

By default, everything in a module is publicly available, that is, the use statement in the
main program makes available all of the code in the module. However, accessibility can
be controlled by the private and public attributes. Everything that is declared private is
not available outside the module.

 44

Fortran 90/95 Programming Manual

Example:

 module convertT

 implicit none

 real, parameter, private :: factor = 0.555555556
 integer, parameter, private :: offset = 32

 contains

 function CtoF (TinC) result (TinF)

 ! funtion result
 real :: TinF

 ! dummy argument
 real, intent (in) :: TinC

 TinF = (TinC/factor) + offset

 end function CtoF

 function FtoC (TinF) result (TinC)

 !function result
 real :: TinC

 ! dummy argument
 real :: TinF

 TinC = (TinF-offset) * factor

 end function FtoC

 end module convertT

The following program uses the module convertT:

 program convert_temperature

 use convertT
 implicit none

 print*, “20 Celcius = “, CtoF (20.0), “ Fahrenheit”
 print*, “100 Fahrenheit = “, FtoC (100.0), “ Celcius”

 end program convert_temperature

The module defines two constants, factor and offset, which are not available to the
program convert_temperature. The functions CtoF and FtoC, however, are available to
the program. Thus, the statement:

 print*, offset

would induce an error message from the compiler. (For example, my Intel Fortran
Compiler would give the error message: “In program unit CONVERT_TEMPERATURE
variable OFFSET has not been given a type”).

 45

Fortran 90/95 Programming Manual

For data objects, like factor and offset in the example above, the public and private
attributes occur in the type declaration statement:

 real, private :: factor
 integer, private :: offset

For procedures, they must be defined in public and private statements:

 public :: CtoF, FtoC

The default accessibility of the module can be set by the public or private statements. If
private is specified, then all module contents are private, except those that are explicitly
defined as public:

 module convertT
private
public :: CtoF, FtoC

Selecting module elements

Generally, the use statement makes available all (public) elements of a module.
However, when only a subset of the module is needed, the accessibility can be restricted
with only.

The example of the previous section could have be written in the following way:

module convertT

 public
 …

end module convertT

 program convert_temperature

 use convertT, only: CtoF, FtoC
 …

 end program convert_temperature

The only option safeguards the module elements that are not needed by making them
inaccessible to the program. It can also make programs more transparent, by showing the
origin of data objects or procedures, particularly if the program uses several modules:

 program only_example

 use module1, only: sphere, triangle
 use module2, only: compute_gradient
 use module3, only: element1, element2, element3

 …

 end program only_example

It is now obvious that the procedure compute_gradient is defined in module2.

 46

Fortran 90/95 Programming Manual

Data encapsulation

Modules allow data and operations to be hidden from the rest of the program. Data
encapsulation refers to the process of hiding data within an “object”, and allowing access
to this data only through special procedures, called member functions or methods. Data
encapsulation is one of the concepts of object-oriented programming (see Chapter 11).
Data encapsulation functions as a security tool, because the data in the object is only
available through the methods, which decreases the possibility of corrupting the data, and
it reduces complexity (because the data is hidden within the module).

Consider the following example:

 module student_class

 implicit none

 private
 public :: create_student, get_mark

 type student_data
 character (len=50) :: name
 real :: mark
 end type student_data

 type (student_data), dimension (100) :: student

 contains

 subroutine create_student (student_n, name, mark)

 ! here some code to set the name and mark of a student

 end subroutine create_student

 subroutine get_mark (name, mark)

 ! dummy arguments
 character (len=*), intent (in) :: name
 real, intent (out) :: mark

 ! local variables
 integer :: i

 do i = 1,100

 if (student(i)%name == name) then
 mark = student(i)%mark
 end if

 end do

 end subroutine get_mark

 end module students

The student_class module defines a data type (student_data) to hold information of a
student (name and a mark). Only the subroutines, create_student and get_mark, are

 47

Fortran 90/95 Programming Manual

accessible from outside the module, all other module contents are private. Thus, one
cannot obtain the mark of a student by writing:

 mark1 = student(1)%mark

because the array student is private.

One has to use the public subroutine get_mark for this, as illustrated in the following
program:

program student_list

 use student_class
 implicit none

 real :: mark

 call create_student (1, “Peter Peterson”, 8.5)
 call create_student (2,”John Johnson”, 6.3)

 call get_mark (“Peter Peterson”, mark)
 print*, “Peter Peterson:”, mark

end program student_list

Global data management – no more common blocks!

Procedures can communicate with each other via their argument lists. However, a
program may consist of many procedures that require access to the same data. It would
be convenient if this data were globally accessible to the whole program. In FORTRAN
77, this was accomplished by common blocks. However, modules can replace all uses
of common blocks. Global data can be packed in a module, and all procedures requiring
this data can simply use the module. Modules are much safer and cleaner than common
blocks. Common blocks have no mechanisms to check errors, variables can be renamed
implicitly, and there are no access restrictions. So, don’t use common blocks, use
modules instead!

Summary

This chapter introduced a new and powerful feature in Fortran 90, modules. Modules are
a means of packaging data and procedures. They make the old-fashioned common
blocks obsolete. Modules provide a method to partition code into easily maintained
packages, and allow some degree of object-oriented programming (we have seen an
example of data hiding and encapsulation).

 48

Fortran 90/95 Programming Manual

Exercises

Exercise 16, the Towers of Hanoi, is optional.

15. Finish the program student_list by adding to the student_class module the procedures
create_student and delete_student.

16. The Towers of Hanoi.
 There are three poles. One of them contains discs having different widths stacked in

ascending order; the other two poles are empty:

The goal is to move all the discs from the centre pole and stack them on one of the
other poles in ascending order. You can only move the top disc of a stack, and you
can only move one disc at a time. It is not allowed to stack a disc on top of one that
is smaller.

You will have to figure out a way to represent the discs and their location, and an
algorithm to move the discs. By printing the occupation of the towers after each
move, you can check if your program works correctly.

Hint: The easiest algorithm uses a recursive function. By making the towers (their
representation) global (by using modules), printing becomes a lot easier!

7. More on I/O
List-directed input/output

In Chapter 2 we have seen that we can transfer data from the keyboard into the program
using read*, and write characters to the screen via print*. This simple form of I/O is
called list-directed input/output. The * in read* and print* means “free format”, that is,
the format is defined by the computer system, and is not under the control of the
programmer. More control is given to the programmer via formatted I/O.

Formatted input/output

There are two forms of formatted input. The simplest one has the form:

 read fmt, variable_list

Similarly, the simpler of the two forms of formatted output statements has the form:

 print fmt, variable_list

 49

Fortran 90/95 Programming Manual

Here, fmt denotes a format specification, and variable-list is a list of variables. This form
of read and write reads from the keyboard and writes to the screen, respectively. The
read* and print* we have used so far are a special case of this form.

Format specifications

A format specification defines in which format data is displayed. A format specification
consists of a string, containing a list of edit descriptors in parentheses. An edit descriptor
specifies the exact format (width, digits after decimal point) in which characters and
numbers are displayed.

An example of format specification:

 “(a10, i5, f5.3)”

 The a descriptor is for character variables. In aw, the number w specifies the field
width. Thus, a10 means that 10 places will be used to display the character
variable. If a field larger than the character variable is specified, the variable will
be right-justified (i.e., blanks will appear before the character variable). If no
field width is specified, the width of the field is determined from the actual width
of the character variable.

 The i descriptor is for integers. The number after the i is again the field width.
Another form of the i descriptor is iw.m, where w defines the field width, and m
specifies the minimum number of digits to be displayed, if necessary preceded by
zeros.

 The f descriptor is for reals. In fw.d, w specifies the field width, and d specifies
the number of digits after the decimal point. Thus, f5.3 will display the number
1.30065 as 1.301. Note that this number takes up 5 places: 1 digit before the
decimal point, 3 digits after the decimal point, and the decimal point itself.

 Reals can also be displayed using the es descriptor, which displayed the real in
scientific notation. The form is the same as for the f descriptor: esw.d. Thus,
es10.3 would display the real 6.7345 as 6.734E+00 (with a leading blank,
because of the field width 10).

As mentioned above, format specifiers are used in formatted I/O (in the following
examples, b denotes a blank character):

pi = 3.1415927
print “(a, i3.3)”, “Result = “, 1 ! gives: Result = 001
print ”(f6.3)”, pi ! gives: b3.142
print “(e16.4)”, pi/100 ! gives: bbbbbb3.1416E-02

Repeat counts can be specified if more than 1 item is to be displayed with exactly the
same format:

 print “(3(f6.3)”) x, y, z

 50

Fortran 90/95 Programming Manual

More formatted I/O

As mentioned above, there are two different forms of the formatted input and output
statements. The first form is the one we have just seen above:

 read fmt, variable_list
 print fmt, variable_list

The other form requires a unit number:

 read (unit=u, fmt=fmt) variable_list
 write (unit=u, fmt=fmt) variable_list

fmt is again a format specification, and u is a unit number, a number associated with a file
(see next section).

(In Fortran 90, the “unit=” and “fmt=” in the read and write statements above are in
principle not required – if they are omitted, the unit number has to be the first argument,
and the format specification the second argument-, but they enhance readability. In F, the
“unit=” and “fmt=” are required.)

Several optional specifiers can be specified as well, one of them is iostat, which can be
used to recover from errors while reading or writing (it is very useful for checking errors
while reading a file):

read (unit=u, fmt=fmt, iostat=ios) variable_list
 write (unit=u, fmt=fmt, iostat=ios) variable_list

Here, ios must be an integer variable. If no errors occurred during reading or writing, the
integer variable is set to 0, a positive integer means an error occurred, and a negative
integer means an end-of-file condition occurred.

File handling

Most programs need to receive information, and need to output data. So far, we used the
keyboard and screen to input and output information. However, other devices, such as a
disk, tape, or cartridge, can be used as well. A collection of data on any of these devices
is a file. To make a file available to the program (so that the progam can read data from,
or write data to the file), it must be assigned a unit number. The open statement is used
for this.

The open statement has the following form:

 open (unit=u, file=filename, status=st, action=act)

 The unit number u is a positive integer (or integer expression). This specifier is
required.

 The status st is a character expression. It can be “new” (the file should not yet exist,
but will be created by the open statement), “old” (the file exists), “replace” (if the file
doesn’t exist, it is created, if the file already exists, it is deleted and a new file with the
same name is created), or “scratch” (a file that is just used during execution of the
program, and does not exist anymore afterwards).

 51

Fortran 90/95 Programming Manual

 The filename is a character expression giving the name of the file. The file specifier is
required if the status is “old”, “new”, or “replace”, and it must not appear if the status
is “scratch”.

 The action act is a character expression as well; it can be “read” (file cannot be written
into), “write” (cannot read from the file) or “readwrite” (no read and write restrictions).

These are the most common specifiers for the open statement (and are all required in F,
but note that the filename must not be specified if the status is “scratch”). There are
optional specifiers as well (access, iostat, form, recl, and position). The most useful of
these is probably iostat, which should be set to an integer variable. This variable is set to
zero if the open statement is correctly executed, and is set to a positive integer if an error
occurred.

Unit numbers cannot be negative, and often the range 1-99 is allowed (although this is
processor-specific). Generally, 5 is connected with console input, and 6 with output to
screen. The unit number 0 is also often special. Thus, don’t use 0, 5, and 6 for external
files (files on disk).

We can read from and write to a disk file, if this file is opened and assigned a unit
number:

 write (unit=8, fmt = “(a2, 3(f10.6))”) atom_type, x, y, z

When a file is not longer needed, it should be closed. The close statement disconnects a
file from a unit. The syntax is:

 close (unit=u, iostat=ios, status=st)

The unit and iostat specifiers have the same meaning as above, status can be “keep” (the
file will still exist after execution of this statement) or delete” (the file will be deleted).
Only the unit specifier is required. If the status is not specified it is “keep”, except for
scratch files, for which it is “delete”.

An example:

 program file_example

 implicit none

 integer :: ierror

 open (unit=13, file=”test.dat”, status=”new”, action=”write”, iostat=ierror)

 if (ierror /= 0) then
 print*, “Failed to open test.dat”
 stop
 end if

 write (unit=13, fmt=*) “Hello world!”

 close (unit=13)

 end programfile_example

 52

Fortran 90/95 Programming Manual

This program creates a file called test.dat, opens it for writing, and writes a message into
the file. After execution of the program the file will still exist. If the open failed, then
execution of the program is stopped. It is good programming practice to test if the open
statement was successful. If it had failed, the program would have crashed when it tried
to write into it.

Internal files

A unit that is associated with an external device (like for example keyboard, screen, disk,
or cartridge) is an external file. There are also internal files, and read and write can also
read from and write into these. An internal file is a character variable. Contrary to
external files, an internal file is not connected with a unit number.

Example:

 character (len=8) :: word
 character (len=2) :: ww
 integer :: ierror

 write (unit=word, fmt=”(a)”, iostat=ierror) “aabbccdd”
 ! the character variable “word” now contains the letters aabbccdd

 read (unit=word, fmt=”(a2)”, iostat=ierror) ww
 ! the character variable “ww” now contains the letters aa

String manipulation functions

The following intrinsic functions to manipulate strings can be very useful:

trim
trim (string): returns the string with trailing blanks removed (the length of the string will
be reduced)

adjustl
adjustl (string): removes leading blanks, and appends them to the end (so the length of
the string remains constant).

adjustr
adjustr (string): removes trailing blanks, and inserts them at the front of the string.

index
index (string, substring): returns the starting position of a substring in a string, or zero
if the substring does not occur in the string.

len
len (string) returns an integer with the value of the length of the string.

len_trim
len_trim (string): returns an integer with the value of the length of the string without
trailing blanks.

 53

Fortran 90/95 Programming Manual

Examples:

In the following examples, b denotes a blank character.

trim (“bbStringbb”) gives “bbString”
adjustl (“bbTanja”) gives “Tanjabb”
adjustr (“Wordbbbbb”) gives “bbbbbWord”
index (“Tanja van Mourik”, “van”) yields 7.
len_trim (Tanjabbbb) yields 5.

In the following example the program reads a file and uses the intrinsic index to search
for the occurrence of the word “energy”:

!! Example for reading an output file

program readout

 implicit none

 integer, parameter :: linelength = 120
 character (len=linelength) :: line
 integer :: ierror

 open (unit=10, file="test.dat", action ="read", status="old", iostat=ierror)
 if (ierror /= 0) then
 print*, "Failed to open test.dat!"
 stop
 end if

 readfile : do

 read (unit=10, fmt="(a)", iostat=ierror) line

 if (ierror < 0) then
 print*, "end of file reached"
 exit readfile

 else if (ierror > 0) then
 print*, "Error during read"
 exit readfile

 else
 ! line has been read successfully
 ! check if it contains energy
 if (index (line, "energy") > 0) then
 print*, "energy found!"
 exit readfile
 end if
 end if

 end do readfile

 close (unit=12)

end program readout

 54

Fortran 90/95 Programming Manual

The program reads the file “test.dat” line by line in the “endless” do loop readfile. Each
time a line is read in, the program checks if the end of the file has occurred, or if an error
accurred during reading. If either of these happened, then the do loop is exited.

Summary

In this chapter we learned formatted input/output and how to deal with files.

Exercises

17. Write a program with a function to eliminate blank characters from a string.

18. Gaussian is a well-known quantum chemical program package. The output of a
calculation, for example a geometry optimisation using the MP2 (2nd-order Møller-
Plesset) method, contains a lot of data. Most of it is not very useful, and you may just
be interested in the final optimised energy.

Write a program that reads a Gaussian output file of an MP2 geometry optimisation,
checks if the optimisation finished, and prints the optimised energy to another file. If
you have access to Gaussian, create an output of a geometry optimisation (for example,
H2O using MP2 and the 6-31G* basis set), otherwise create a file that has the
characteristics specified below, and test your program.

After each geometry optimisation cycle, the energy is printed in a line like:

E2 = -0.1199465917D+01 EUMP2 = -0.48968224768908D+03

(The actual numbers of course depend on molecule, basis set, optimisation cycle).
The MP2 energy is the one labelled EUMP2.

When the geometry optimisation is finished, the program prints “Optimization
completed”. This happens after the last (optimised) energy is listed.

(Alternatively, do the above using the output of your favourite computational
chemistry program. If you do this, then provide an example of such an output with the
solution to this exercise.)

8 Pointers
Pointers

The value of a particular data object, for example a real or an array, is stored somewhere
in the computer’s memory. Computer memory is divided into numbered memory
locations. Each variable is located at a unique memory location, known as its address.
Some objects require more storage space than others, so the address points to the starting
location of the object. There is a clear distinction between the object’s value and its
location in memory. An object like an array may need a lot of memory storage space, but
its address only requires a very small amount of memory.

In certain languages, like C and C++, a pointer simply holds the memory address of an
object. A pointer in Fortran (which is a data object with the pointer attribute) is a bit
more complicated. It contains more information about a particular object, such as its type,
rank, extents, and memory address.

 55

Fortran 90/95 Programming Manual

A pointer variable is declared with the pointer attribute. A pointer variable that is an
array must be a deferred-shape array. In a deferred-shape array, only the rank (the
number of dimensions) is specified. The bounds are specified by just a colon. The extent
of the array in each dimension (i.e., number of elements along a dimension) is determined
when the pointer is allocated or assigned – see below.

 integer, pointer :: p ! pointer to integer
 real, pointer, dimension (:) :: rp ! pointer to 1-dim real array
 real, pointer, dimension (:,:) :: rp2 ! pointer to 2-dim real array

In contrast to a normal data object, a pointer has initially no space set aside for its
contents. It can only be used after space has been associated with it. A target is the space
that becomes associated with the pointer.

A pointer can point to:
• an area of dynamically allocated memory, as illustrated in the next section.
• a data object of the same type as the pointer, with the target attribute (see section

on targets below)

Allocating space for a pointer

Space for a pointer object can be created by the allocate statement. This is the same
statement we used before to allocate space for dynamic arrays (see Chapter 5).

program pointer1

 implicit none
 integer, pointer :: p1

 allocate (p1)
 p1 = 1

 end program pointer1

The statement

 integer, pointer :: p1

declares the pointer p1, but at this point it is not associated with a target. The allocate
statement reserves space in memory. This space is the target that the pointer is now
associated with.

After the statement

p1 = 1

the value of the target is 1.

The allocated storage space can be deallocated by the deallocate statement. It is a good
idea to deallocate storage space that is not any more needed, to avoid accumulation of
unused and unusable memory space.

Targets

A target object is an ordinary variable, with space set aside for it. However, to act as a
target for a pointer is must be declared with the target attribute. This is to allow code

 56

Fortran 90/95 Programming Manual

optimisation by the compiler. It is useful for the compiler to know that a variable that is
not a pointer or a target cannot be associated to a pointer. Only an object with the target
attribute can become the target of a pointer.

The program in the previous section can be rewritten as follows:

program pointer2

 implicit none
 integer, pointer :: p1
 integer, target :: t1

 p1 => t1
 p1 = 1

 end program pointer2

After the statement

 p1 => t1

p1 acts as an alias of t1. Changing p1 has the effect of changing t1 as well.

Association

The association status of a pointer can be undefined, associated and disassociated. If the
associaton status is not undefined, it can be tested by the function associated. The
function has 2 forms:

associated (ptr) returns the value true if the pointer ptr is associated with a target, and
false otherwise.

associated (ptr, trgt) returns true of the pointer ptr is associated with the target trgt, and
false otherwise.

So in the program in the previous section before the statement

 p1 => t1

the association status is undefined, but after it both

associated (p1) and associated (p1, t1) would return true.

A pointer can be explicitly disassociated from a target by the nullify statement:

 nullify (ptr)

It is a good idea to nullify pointers instead of leaving their status undefined, because they
can then be tested with the associated function.

Nullify does not deallocate the targets (because there can be more than one pointer
pointing to the same target). Deallocate implies nullification as well.

Linked lists

A linked list is a special kind of data storage structure. It consists of objects of derived
type that are linked together by pointers. There are several kinds of linked lists (single-

 57

Fortran 90/95 Programming Manual

linked lists, double-linked lists, binary trees). Here we will discuss the simplest, and
most common of those, the single-linked list (usually referred to simply as a linked list).

Each element (also called node or link) of a linked list is an object of derived type that
consists of a part with data and a pointer to the next object of the same list:

The pointer is of the same type as the other elements of the list. The derived type can for
example be something like:

 type node
 integer :: i
 real :: value
 type (node), pointer :: next
 end type node

Linked lists are not unlike arrays, but there are differences. Linked lists can be allocated
dynamically, so you don’t need to know before the program is executed how many
elements are needed (this also saves memory space). The size of the list can change
during execution (links can be added and removed), and links can be added at any
position in the list. The links are not necessarily stored contiguously in memory.

The “next” pointer of the last link in the list should be nullified. You also need a pointer
(often referred to as head pointer) that refers to the first item in the list.

data

null

data

next

data

next

 58

Fortran 90/95 Programming Manual

Consider the following example:

program linkedlist

 implicit none

 type :: link
 integer :: i
 type (link), pointer :: next
 end type link

 type (link), pointer :: first, current
 integer :: number

 nullify (first)
 nullify (current)

 ! read in a number, until 0 is entered
 do

 read*, number

 if (number == 0) then
 exit
 end if

 allocate (current) ! create new link
 current%i = number
 current%next => first ! point to previous link
 first => current ! update head pointer

 end do

 ! print the contents of the list
 current => first ! point to beginning of the list

 do

 if (.not. associated (current)) then ! end of list reached
 exit
 end if

 print*, current%i
 current => current%next ! go the next link in the list

 end do

end program linkedlist

In this program a link is defined that can hold an integer. The pointer “first” is the head
pointer. In the first do loop, numbers are read in until a 0 is entered. After each number
is read in, a new link is created and added before the previous link.

 59

Fortran 90/95 Programming Manual

Thus, if the numbers 1, 2, and 3 are entered (in this order) the list will look like:

The contents of the list are printed in the second do loop. We start at the beginning of the
list (current => first), and go from one link to the next (current => current%next), until
the end of the list is reached (indicated by a not associated next pointer).

Exercises

1

null

2

next

3

next

19. Create a linked list. Each link contains a real number, which is read from screen in a
do loop. After a number is read in, a new link must be created and added to the list in
such a way that the list is sorted (i.e., with increasing (or decreasing) values for the
numbers). Preferably, adding the new link is done in a subroutine. Make also a
subroutine to print the list, so you can check your program. To add the new link at
the appropriate position in the list, you need to distinguish between the following
cases:
• First link. (Can be found out by the association status of the head pointer). If it’s

the first link, create the new link and make the head pointer point to the new link.
(Don’t forget to nullify the next pointer.)

• Adding to the beginning. If the new number is smaller than the number in the
first link, the new link needs to be the first one.

• Second link that should not be before the first one. If you are adding the second
link can be found out by testing the association status of the next pointer of the
first link. The next pointer of the first link should point to the new link.

• Adding to the middle. To find out where the new link has to be added to the list,
you have to go through the list (in a similar way as in the second do loop in the
example above), and compare the new number with the ones in the existing links.
You need to keep track of three links: the new link, the current link (which is the
one that goes through the list as in the example above), and the previous link.
You should test if the new link should be added before the current one, and if so,
the previous link has to point to the new one (that’s why you need the previous
link as well), and the new link has to point to the current link.

• Before or after the last link. If the end of the list is reached, then you know that
the new link should be added either directly before, or after the last link.

 60

Fortran 90/95 Programming Manual

9 Numeric Precision
Fortran 90 allows the programmer to specify the required precision of real variables. If
we declare the real variable x:

 real :: x

then the x is represented with the default precision for the processor used. This precision
can vary from computer to computer, depending on, among other things, the word length
of the processor. Thus, a real will be more accurately represented on a 64-bit than on a
32-bit processor. In FORTRAN 77, the precision of real variables could be increased by
using double precision for reals, which use two words instead of one to represent the
numbers. In Fortran 90, the types integer, real, complex and logical have a “default kind”
and a number of other kinds. How many other kinds there are for a certain type depends
on the particular processor. Each kind has its own kind type parameter, which is a
integer of positive value. For example, if, for a certain processor, a kind value of 8 yields
a precision equivalent to the old double precision type of FORTRAN 77, then the
following statement

 real (kind = 8) :: x1

is equivalent to the FORTRAN 77 statement

 double precision x1

However, this is not very portable, because the required kind value may be different on
another computer. Although many computers use kind values that indicate the number of
bytes used for storage of the variable, you cannot rely on this.

Fortran 90 has two intrinsic functions to obtain the kind value for the required precision
of integers and reals: selected_int_kind and selected_real_kind, respectively.

The selected_real_kind function returns an integer that is the kind type parameter value
necessary for a given decimal precision p and decimal exponent range r. The decimal
precision is the number of significant digits, and the decimal exponent range specifies the
smallest and largest representable number. The range is thus from 10-r to 10+r.

As an example:

 ikind = selected_real_kind (p = 7, r = 99)

The integer ikind now contains the kind value needed for a precision of 7 decimal places,
and a range of at least 10-99 to 10+99.

 61

Fortran 90/95 Programming Manual

The function selected_real_kind can be used in a number of different forms:

! if both precision and range are specified, the “p =” and “r =” are not needed
! the following two statements are therefore identical
 ikind = selected_real_kind (p = 7, r = 99)
 ikind = selected_real_kind (7, 99)

! If only the range is specified, the “r = “ is needed
 ikind = selected_real_kind (r = 99)

! if only one argument is used, it is the precision
! the following two statements are therefore identical
 ikind = selected_real_kind (p = 7)
 ikind = selected_real_kind (7)

If you want to use the ikind value in a type declaration statement, it has to be a constant
(i.e., declared with the parameter attribute). The real variable x declared in the
following statement is precise to 7 decimal places, and has a range of at least 10-99 to
10+99.

 integer, parameter :: ikind = selected_real_kind (7, 99)
 real (kind = ikind) :: x

If the kind value for the required precision or range is not available, a negative integer is
returned.

The selected_int_kind function returns the lowest kind value needed for integers with
the specified range:

 integer, parameter :: ikind = selected_int_kind (10)
 integer (kind = ikind) :: big_number

The integer big_number can now represent numbers from 10-10 to 10+10. As for
selected_real_kind, if the kind value for the required range is not available, a negative
integer is returned.

Exercises

20. Write a program that declares a real with a precision of at least 7 decimal places and
an integer that can represent the number 1000000000000.

10 Scope and Lifetime of Variables
Local variables in subroutines

The scope of an entity is that part of the program in which it is valid. The scope can be as
large as the whole program, or as small as (part of) a single statement. Variables defined
in subroutines are valid only in their subroutine i.e., their scope is the subroutine. These
variables are called local variables, and cannot be used outside the subroutine. The
lifetime of a variable defined in a subroutine is as long as this subroutine, or any routine
called by it, is running.

 62

Fortran 90/95 Programming Manual

In the following example the variable int1 in the main program is not the same as int1 in
the subroutine sub1 (they occupy different memory locations), and thus, the print
statement in the main program would print 0 (and not 1).

 program scope

 implicit none
 integer :: int1

 int1 = 0
 call sub1

 print*, int1

 end program scope

 subroutine sub1

 implicit none
 integer :: int1

 int1 = 1
 print*, int1

 end subroutine sub1

The variable int1 in the subroutine sub1 goes out of scope at the end of the subroutine
i.e., it then does not exist anymore. Consider the following example:

 program scope

 implicit none

 call sub1 (.true.)
 call sub1 (.false.)

 end program scope

 subroutine sub1 (first)

 implicit none
 logical, intent (in) :: first
 integer :: int1

 if (first) then
 int1 = 0
 else
 int1 = int1 + 1
 end if

 print*, int1

 end subroutine sub1

The first time sub1 is called (with first = .true.), the variable int1 is set to 0. At the end
of sub1, int1, being a local variable, goes out of scope and may be destroyed. Thus, one
cannot rely on int1 containing the number 0 the second time sub1 is called. So the
above program is actually wrong, although it may work with some compilers. If the

 63

Fortran 90/95 Programming Manual

variable in a subroutine needs to be kept between successive calls to the subroutine, it
should be given the attribute save:

 subroutine sub1 (first)

 implicit none
 logical, intent (in) :: first
 integer, save :: int1

 […]

 end program sub1

Note that initialisation of a variable in the declaration or in a data statement implicitly
gives it the save status. However, it is clearer to explicitly include the save attribute also
in these cases:

 integer, save :: int1 = 0

One should not give a variable the save attribute if it does not need it, as it may impede
optimisation by the compiler and it also makes e.g., parallelisation more difficult.

Variables in modules

The lifetime of a variable declared in a module is as long as any routine using this
module is running. Consider the following example:

 module mod1

 implicit none
 integer :: int1

 end module mod1

 subroutine sub1 (first)

 use mod1
 implicit none

 logical, intent (in) :: first

 if (first) then
 int1 = 0
 else
 int1 = int1 + 1
 end if

 end subroutine sub1

 program prog1

 implicit none

 call sub1 (.true.)
 call sub1 (.false.)

 end subroutine prog1

 64

Fortran 90/95 Programming Manual

The integer int1 does not need to be declared in sub1, because it is already declared in
the module mod1 (and sub1 uses the module). However, at the end of the subroutine,
int1 goes out of scope (because there is not a subprogram anymore that uses the module
mod1), and one cannot rely on int1 containing the number 0 the second time sub1 is
called. So the above program is actually wrong (although it may work with some
compilers). To make the above program standard conforming, one would have to either
use the module in the main program (in addition to using it in the subroutine), or declare
int1 with the save attribute.

11 Debugging
Debuggers

You have probably been using write or print statements to figure out why a program
gives wrong results. The larger the program gets, the more cumbersome it is to search for
errors like this. Debuggers are a much more powerful tool for stepping through the code
and examining values.

A debugger lets you see each instruction in your program and lets you examine the values
of variables and other data objects during execution of the program. The debugger loads
the source code, and you run your program from within the debugger.

Most operating systems come with one compiler or the other. Graphical programming
environments like Visual Fortran come with an integrated debugger. Full screen
debuggers generally show the source code in a separate window.

Most debuggers have the following capabilities:

 Setting breakpoints. A breakpoint tells the debugger at which line the program
should stop. Breakpoints allow analysis of the status of variables just before and
after a critical line of code. Execution can be resumed after the variables have
been examined.

 Stepping through a part of the source code line by line.

 Setting watch points. The debugger can show the value of a variable while the
program is running, or break when a particular variable is read or written to.

To produce the information needed for the debugger the program should be compiled
with the appropriate compiler flag (generally –g).

gdb

The GNU debugger, generally comes with Linux. Xxgdb is a graphical user interface to
gdb for X window systems.

Some useful commands in gdb and xxgdb:

break: set a breakpoint.
run: begin execution of the program.
cont: continue execution
next: execute the next source line only, without stepping into any function call.
step: execute the next source line, stepping into a function if there is a function call.

 65

Fortran 90/95 Programming Manual

Look at the man pages for more information on gdb.

dbx

The run, cont, next and step commands are the same as in gdb. Breakpoints can be set
with stop:
stop [var] stops execution when the value of variable var changes
stop in [proc] stops execution when the procedure proc is entered.
Stop at [line] sets a breakpoint at the specified line.

Look at the man pages for more information on dbx.

Exercises

21. Find an appropriate debugger on your computer. Recompile one of your programs
with the debugger option specified. Use the debugger to step through the program.
Set a few breakpoints and examine the value of variables during execution of the
program.

Object-Oriented Programming
To discuss the object-oriented (OO) paradigm is beyond the scope of this manual,
particular because Fortran is not an OO language. (Two of the most well-known OO
languages are C++ and Java). However, object-oriented thinking is gaining ground in the
programming world, and also Fortran 90 does support (or simulate) some of the OO ideas.

An “object” in a program is supposed to resemble a real-world object (like for example
an animal, or a molecule). It has characteristics that distinguish it from other objects, and
it can “behave” like its real-world counterpart. In Fortran 90 objects can be modelled
with modules. Modules can contain data to define the characteristics of the object, and
procedures to manipulate this data.

The four concepts of object-oriented programming are Data Encapsulation, Data
Abstraction, Inheritance and Polymorphism. To be an object-oriented language, a
language must support all four object-oriented concepts.

Fortran is in principle a “structured” programming language, but Fortran 90 does support
some of the ideas of object-oriented thinking. Fortran 90’s modules support data
abstraction (grouping together of data and actions that are related to a single entity), data
encapsulation (the process of hiding data within an “object”, and allowing access to this
data only through special procedures or member functions), but it lacks inheritance
(deriving subclasses from a more general data type). Polymorphism refers to the ability
to process objects differently depending on their data type (by redefinition of “methods”
for derived types) and to the ability to perform the same operation on objects of different
types. The latter type of polymorphism can be simulated in Fortran 90 through
overloading.

The new upcoming Fortran 2000 standard completely supports object-oriented
programming (including inheritance). However, the standard is not expected to be
released before 2004.

 66

Fortran 90/95 Programming Manual

To learn more about the OO paradigm, see for example:

“Object-Oriented Programming: A New Way of Thinking”
Donald W. and Lori A. MacVittie
CBM Books 1996.

 67

	
	
	Fortran 90/95
	Programming Manual
	Tanja van Mourik
	
	Fortran 90/95 Programming Manual
	Brief History of Fortran
	Introduction to the course
	Bibliography
	Names in Fortran 90
	Types
	Integer Type
	Real Type
	Complex Type
	Logical Type

	Constants
	Variables
	Arrays
	Character strings
	Implicit typing
	Arithmetic operators
	Numeric expressions
	Logical operators
	Relational operators
	Logical expressions
	Intrinsic functions
	Simple in- and output
	Comments
	Continuation lines
	Summary
	Exercises
	Control Constructs
	If constructs:
	Do loops
	Endless Do
	Case constructs
	Summary
	Exercises
	Program units
	Procedures
	External procedures
	Intent
	Interfaces
	Recursive procedures
	Internal procedures
	Summary
	Exercises
	5 More on Arrays

	Declaring arrays
	Array terminology
	Array assignment statements
	Array sections
	Array expressions
	 program dynamic_array
	 implicit none
	 real, dimension (:,:), allocatable :: a
	 integer :: dim1, dim2
	 integer :: i, j
	 print*, "Give dimensions dim1 and dim2: "
	 read*, dim1, dim2
	 allocate (a(dim1,dim2))
	 do i = 1, dim2
	 do j = 1, dim1
	 a(j,i) = i*j
	 print*, "a(",j,",",i,") = ", a(j,i)
	 end do
	 end do
	 deallocate (a)
	 end program dynamic_array
	7. More on I/O

	List-directed input/output
	Exercises

